~A151 892 BﬂCKEND CONTROL PROCESSOR FOR A MULTI-PROCESSOR 1/3
LﬁTlONﬂL DRTRBRSE COHPUTER SVSTEH(U) HIR FDRCE INST
PATTERSO H SCHOOL O
UNCLASSIFIED D H PONTIFF DEC 84 RFIY/GCS/ENG/BH) 22 F/G 9/2

PPy ey
AP i A SIS A A Y)

R
S iR Aty R e ls el slaom

i £
——— E m =
s S5
i
IL2s s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ity - v P8 w A T L«

SRR R R T e em ¥
REPROBOEED AT Gi é@-@wﬁt‘ - =

AD-A151 892

BACKEND CONTROL PROCESSOR
FOR A MULTI-PROCESSOR
RELATIONAL DATABASE COMPUTER SYSTEM

THESIS

Dale M. Pontiff
Captain, USAF

AFIT/GCS/ENG/84D-22

Tuis document has beea apysoved
for public release and sale; s
distribution s oniimited. »

OTIC FILE copy

DEPARTMENT OF THE AIR FORCE _ g
AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

c5 03 13 069

- - W T e T e T W g LWL LT G W N WL L W L W e e e, g it C P .) . - . Woe - 0 v
NI SR A T L i ST PR

{77 . AFIT/GCS/ENG/84D-22

R
.4"“
" Kl
EUTRRNReR |
LT ‘

4

AR
WE TSN

.
:
AL ala

-~
i

BACKEND CONTROL PROCESSOR mot
FOR A MULTI-PROCESSOR -

? RELATIONAL DATABASE COMPUTER SYSTEM

:; THESIS

i Dale M. Pontiff R
3 Captain, USAF e
‘ AFIT/GCS/ENG/84D-22

! .-

Approved for public release; distribution unlimited :};;

I R IR S S
. Te e Wt LN N LRI SRS -
RASATRSAN A ;-"_-':-\ DWW WY -‘\.' '.'\ -

FEE TS TRIRN
KA
.

W
.-t . o0 N .

S e AN e W LSS R
o ‘_‘.A\A.L)’l.l

m‘... Pagry P ATV S I s i g e S .'.7"".4.~TA‘T'_ P T PTY SISO Y T TS R % N T

.................

AFIT/GCS/ENG/84D-22

BACKEND CONTROL PROCESSOR FOR A MULTI-PROCESSOR i
RELATIONAL DATABASE COMPUTER SYSTEM

THESIS 1

Presented to the Faculty of the School of Engineering —

-

fo

of the Air Force Institute of Technology
Air University

In Partial Fulfillment of the

"
Requirements for the Degree of o
~ 5
. cces e
Master of Computer Information [~°¢®SSien For i
MTIS omagl S
, S
T M -
DT e atian,
e
b
e ‘e
Tt Iy ey
-, o5 .

Dale M. Pontiff) j' lor

Al

Captain, USAF

December 1984

”q, .:_'
e, -
‘Wap,,(".
.

Approved for public release; distribution unlimited

LSS
«®e

...... r————— DM I A YA S v S EE AU S ST AL AL A el AL ISR rvl B SNun e, Sral et e e A AR A" Al & DA ST A o]

R ST A A

Preface

In 1981, Robert Fonden began the design and development
of a Backend Multi-Processor Relational Database Computer
System. This thesis addresses a single component of this
system, the Backend Control Processor (BCP). The BCP 1is
responsible for managing the actions of the entire backend
system, It must provide direction for many slave micro-
processors, and control the system paging algorithms,. This
paper covers, in detail, the design of the BCP for Robert
Fonden's Backend architecture.

I would like to give special thanks to my thesis advisor
Dr. Thomas C. Hartrum for his guidance, patience, and encour-
agement during the development of this thesis, Each time the
effort grinded to a halt, he provided the necessary boost to
set my mind in motion once again., Thanks are also due to Dr.
Henry Potoczny for his assistance, especially in Chapter 4,
and to the lab technicians, Dan Zambon, Charlie Powers, and
Capt. Lee Baker for their prompt, courteous responses to all
of my questions and problems.

Finally, I wish to thank my wife, Beth, for all her

help, support, and encouragement during my graduate studies,

t
)
e

PP

r
a

4

ry

........
B A

R AU PR P
S I AN
RPN e el

LA . Lt b

ﬂA_‘A'_"_..A-'..f‘L PARPUSTAN) .

AR A AP o

Bt -

i A Tl it T "N L AT AN AL YA PR A T T V. ~ - Dy . g - B v i3 T T

qe N e T TG L N e T R N G I I S

Contents
Page
Preface e & e e s e e e e e e e e s e i
List of Figures . « « ¢« ¢ ¢ « o o o o o o o v

Abstract * L] L] * L] . L] * L] L] L] * L] L] * . vii

1
- I. Introduction .« ¢ « o ¢ o ¢ & e e e e 1
- Background . .« .« < .+ & ¢ 4« e e s 1
' Statement of Problem < . . 5
*; Scope e s+ e 4 e e 2 e e e e e e 5
- Current Knowledge . . .« « « ¢« o« o« » 6
L Approach . . + &+ ¢ ¢« ¢« o o 4 e e 6
d Overview of the Thesis« + « « 7)
[Material and Equipment 8 N
ITI. Research Phase o s e s s e e e e e e e 9 -
Introduction e & e 4 e e e e e e 9 1
Ohio State University's Database Efforts . . 9
D I R ECT - 0 1 1) .
= SUMMATY « ¢ o« o o o o o o o o « . 12 —
“" s
I1ITI, Functional Requirement Analysis of the e
Backend Control Processor+« .+« « « . 13]
Introduction o s e+ 4 + + e« e « e« . 13 e
Addition of Frontend 13 —
Functional Breakdown of a DBMS e+ « « . 15 -
Frontend's Responsibilities e« + « + . 16
Backend Control Processor's Responsibilities . 17
Query Processor's Responsibilities 18
Mass Store Unit's Responsibilities 18
Memory Buffer Unit's Responsibilities . . . 18
Location and Accessibility of the -~ 1
Database Data Dictionary e+ e« s+ e . 19 e
Handling Update Type Queries 20
Modification of Rogers' Query Processor
Analysis & + ¢« 4 e e e s e s+ e .21 A
Replace Average« « .+ « « o 22
Replace Compress . ST
Modify Insert . . .« .« « « .+ o+ o 23]
Add Intersect e e e e« s+ e e & . 24 -5?;
Modify Min/Max 24 ':'::.‘:“
Modify Value Returing Operations . . . 24 NN
Summary of Query Step Operations 25
- Unary Input Relations 26 PRy
i1 R
—
Q e
2. o
T e A T S N N P S T

Binary Input Relations « + s+ s+ e . 26
Summary of BCP Commands . . . « « « o« o 27

Iv Paging Theory 29

Introduction s e e & e s e e e« &« « 29
Select e o e+ & &« s+ e s s+ e e « <« 30
Delete e e & & e 2 e e 2 e e e e« 3
Modify L] L] L] £} . - L] L] L] . L] . L] 31
Count « « + « o o o &« e o o « o« & 31
Project « . ¢ ¢ « 4+ ¢ e+ e+ e e e« < 32
Min e o+ o 4 e & & e e e e 4 4 e 32
Max L[] - * L] L] . L] L] - L] e L] L] L[] 33
Sum e o s+ s s e & & s & &« e &« « 133
Sort .« « ¢+ 4 4 & + 4+ & e« &« « <« 33
Product . . .+ +« +« « ¢ + + + e« « <« 33
Join 34 1
Intersect e ¢ & & s e & & e e« &« & 35
Diff L 3 L] . * * L] * . L] L L] . L] L d 35 .
‘ Union « ¢« .« ¢ « ¢« o ¢« o + +« « « o« 36 o
hi Insert e & s+ e« e e e & & o & & « 36 L |
v Local Hardware and Restrictions 37
Introduction e & e e+ e & e e e o e« 37 ;
Developement Hardware e ¢ e« « e« e« .« e 37
Initial Configuration B P I
Drawbacks e e . e« o o « e« e <« « 39
Alternative Configuratlon e o« &« o &« &« & 4O
VI Data Structures . . « o o o o s o o+ o« o &2
Introduction o e e e & e o e e & . 4h2
Task Trees '3 [) L [] 42
Relation Database Files 44 <
File List« «+ .« . .+ . .+ 44 -
Quer}' Node » 45 V'._':
Query Branch . . .« +« =+ 4+« « « o+ =« 46 Tq
Task Tree « « « « + + o o « o« o« A&7 o
Message Queue« .+ .+ ¢« .+ « « .« 50 -~
FE Structures 51 :‘;
Query Step e« + e+ s+ s+ & e« e &« « 52 -]
Query Step -- Header e + « e« « 52 1
Query Step -- Selection Criterion . 53)
Query Step -- Modification List . . 55 .
Query Step -- Attribute List . . . 56 ?
Query Header . . . + + +« « « « =« 56 y
QP Structures . « « ¢ ¢« + ¢ « e « « 57 4
QP Paging Information 57)
QP Status . .« .+« ¢« + + + +« « + <« 58
— Query Processor . . « « +« « o« +« « 59 -
R MSU Structures « .« « « ¢« + + « o o« « 59 S
iii L)
O N e o e e e

T TT————

Vita

Volume II:

T
AR .
R . .

. r

.

o

Appendix C

MSU Paging Information
MSU Command Message .
System Status
Buffers e e s e s
Test Files e« s s e
System Status (Structure)

VII Detailed Design

Introduction e o e e
QP Assignment
Overview of System Paging .
Qutput File Control . . .
Paging Algorithms
General Paging Algorithm
Sort Paging Algorithm
Merge Paging Algorithm
Sorted Merge . .
Unsorted Merge .
Buffer Allocation Scheme .
Node Splitting+ .
Node Splitting Algorithm
Node Splitting Example
File Locking Scheme . . .
Error Handling =« &

VIII Conclusion and Recommendations . .

Overview . . . « .+ =« .« .
Suggested Advancements . . .
Parting Comment e e s+ e e

Appendix A: Glossary . .« « + « o+ o

Appendix B: Single Processor DBMS (SADT)

: Multi-Processor Backend DBMS
Data Element Data Dictionary
Activity Box Data Dictionary

Appendix D: Sample Query in the Frontend
Appendix E: Summary Paper . . .« . .

Bibliography . ¢« « « ¢« ¢ « ¢ o

Structure Charts and Program Listing

(Available from AFIT/EN)

iv

(SADT)

L[] L) L] . * .

"

- T T it B S e -

127
174

203
208
217
219

L » .
e, ’ IR
,'.’-'»'-,‘, o R
LIRS WP OSSN S I

.........
..........................

List of Figures

i Figure Page
1. Fonden's Original Physical Design Approach . . 4

2. Modified Physical Design of Backend System . . 14

. 3. 1Initial Developement System Configuration . . 37
4, Alternative Developement Configuration . . . 40
5. Overview of Tasktree Structure . .« =« =« =« 42
h 6. Query Tree (Branch) e e s s e e e e e 45 ":'-ti
7. Highlevel View of Tasktree 47 }
8. FE Query Message e e s e e e e e e e 50 ",‘_’
." 9, QP Assignment Algorithm« .« .+ .+ . 65 :j
: 10. General Paging Algorithm+ .« 69 *
11. Soort Operation Paging Algorithm 71 1
i \; 12. Union/Insert Operations Paging Algorithm . e 73 '_"—:
- 13. Node Splitting Algorithm 77
14, Find Largest Query Step Segment c e e e e 78 \:
' 15. Split Node in Half Algorithm « e e e e e 80 :‘"':
A B-1. Single Processor DBMS+ .+ . . 93]
. B-2. Provide Relational DBMS 095 i
. B-3. Process DBMS Input . . =+ & =« « .« + o . 97]
' C-1. Multi-Processor Backend Relational DBMS . . . 100]
C-2. Provide Relational DBMS Support .« ¢+ <« . 102 i
D C-3. Initialize Database System 104 ,1
C-4. Provide DBMS Functions 106 =
C-5. Provide Frontend DBMS Functions . . ., . . 108 L
! -— C-6. Execute FE DBMS Functions e+« +« « . o 110 - j
u v l
. o
‘.

..........................
...

C-7. Execute Preliminary DBMS Functions e« e e . 112
C-8. PrOVide BCP Functions] [} . 114 '-;A :

C-gu Execute BCP DBMS Functions L] . 116

FRERERETERS 5. I IR A

C—].O. Add to Task Tree 3 . [} 118

i C-11. Manage QP Assignment/Release e e« e « « « 120 o
| C-12, Manage Active Query Steps e e e e e e . 122
C-13. Update Task Tree e e s e« e e e e s e 124
; C-14. Shutdown System . . . « =+« + « =« « « o« 126 T
D-1. Optimized Query Tree« =« « =« . 205
E-1. Physical Design of Backend System 209 ;
i E-2. Optimized Query Tree « =« « .« = 210 -f'—

E-3. Query Tree (Branch) e s+ « e« &« &« e« e« . 215

.-
¥

R

]

NRSK

RS

~ - ey

“

3 3

"]

» o

R

w .;
. i

.- L
R R L R S
PO SRS I I, . S Tait M B S Yy

i i R R A=) S - M AR SR MO S AL A R o el o /el e s gve i il e i sten g

DI N R A e S - LA

Abstract

This paper discusses the design and developement of a
control processor for a multi-processor relational database
machine. The objective was to create the software needed to
allow a micro-processor to receive relational query trees
from a frontend processor, and to distribute the work load
between several other slave processors.

The requirement analysis of the controller determined
that the controller must provide three major functions within
the backend database machine. It must assign slave proces-
sors to query operations, control the system paging, and
manage file creation and deletion. Next, the thesis proves
that each query operation can sucessfully be split across
several slave processors and the results be recombined to
provide the same response as a query executed on a single
processor, Finally, the thesis gives a detailed description
of the software algorithms use by the BCP to manage the

backend system.

vii

IR T S T S i -

‘;\ - . CI R IR I '..'.-"_.. '... -

. .

o, B et R N

et . . . R P e TR . B
. S0 - e . St e A -

RPN S I L L NP PRSP S O

e e - S A A At i e A . . R ——————
L. LI A T U et e e PatEn s R . . - . . . A

BACKEND CONTROL PROCESSOR FOR A MULTI-PROCESSOR

3 : -
‘I RELATIONAL DATABASE COMPUTER SYSTEM o

I Introduction

A .
R T
I T

o Lo g d g 2 a4

P Background '

p

[In recent years, there has been a growing requirement

o

!

': for "easy-to-use" databases. This growth is caused by an c
}

increase in the number of people without computer programming

background relying on computers to organize information for : 1

their jobs. Because of the "easy-to-use" requirement, rela- -
. 4

tional databases have been growing in number and popularity.

{f Relational databases are based on solid mathematical
} L
"-- principles, using relational algebra, yet their use is intui- M
-
tive. At the user level, relational databases provide a :

tableau view of the data. This view makes it e:cier to train
people in the use of the database. -

While relational databases solve the "easy-to-use" cri-

e.

terion, there is still the problem of handling the substan-

tially increasing amounts of information processing. One of
the major drawbacks of relational databases is that they tend

to be slower than other database models when dealing with EEﬁ

4 2

large databases., As the database grows in size and complex-

e
! a &

ity, the computer resources will become saturated, and system

7’
o
PP
e v
>

" degradation will begin.,

)

There are currently many research efforts underway to

-
TN
"N
‘N
‘M
3
T
|

i

”
e

T T, —
PP LN L
. coaT :

—v T
Ch Y
‘ o

T

improve computer databases. Within AFIT alone, there is work
being done on several theses concerning four major areas of
database development. This interest in databases at AFIT is
largely directed by Dr. Thomas Hartrum. These four areas of
research include (7):

* intelligent software (reduce paging)

* specialized architecture (provide parallel

processing)

* distributive DBMS (allow several DBMSs on many systems

to act as one)

* user interfaces (provide user-friendly tools and

interfaces to simplify complexity of the system)
As knowledge is gained in each of these areas, it is possible
to combine two or more of the features to provide an extreme-
ly powerful DBMS.

This thesis deals with providing a specialized computer
architecture to allow parallel processing on a given query.
This project began with Robert Fonden's design of a multi-
processor DBMS in 1981 (6). Further design work on the
system was done by William Rogers in 1982 (12).

The Fonden architecture makes use of a multiple instruc-
tion multiple data stream (MIMD) backend database architec-
ture to improve system throughput. A MIMD system alléws a
high degree of parallel processing to be achieved by separate
functional units that perform operations simultaneously. To
do this, the data has to be distributed among the multiple
functional units.

With the introduction of inexpensive microsystems, it

has become feasible to use a number of secondary computers as

T T T N T W T T R T N T T R v T W T W W W wo o o~ =

s W S~

[y

a multifunctional backend system. By placing the database on
a backend, the host system is relieved of many of the time
consuming phases of database processing. This approach adds
more ‘computing power to the existing host system without a
ma jor upgrading to a newer, more powerful machine.

With a multi-processor backend, one can take advantage
of the three types of parallelism inherent in relational
database queries to improve service time. The three types of
parallelism are:

* independent parallelism

* node splitting

* pipelining

Independent parallelism is simultaneously processing two
(or more) parts of a query which will be joined at a later
stage in the query.

Node splitting is having several processors simultan-

eously act on different pages in the same query step.

Pipelining is having the output of a process(es) being
immediately fed into a second processor(s) to complete the
next step of the query.

Fonden's thesis has described a computer architecture in
which a backend system with many small processors can be used
to enhance the performance of a relational database system
(6: 68-91), This architecture uses a master/slave relation-
ship in which a Backend Control Processor (BCP) controls the

action of many Query Processors (QPs). His system consists

[
Ay
oL, e

]
g of (See Figure 1):
ﬁ.’ ' * a mass storage device e
* a BCP V.
* eight QPs SRR
. # gix Internal Memory Modules (IMM) per QP el
.iﬁﬂ
&
’ -
]
o]
Host 1
——
'
e
Data .~ -
Base < BCP
\\
QP1 QP2 N QPn
| b
: : ‘
L

Figure 1. Fonden's Original Physical Design Approach
Source: (6: 75).

This architecture makes use of both the backend system and
the inherent parallelism of relational queries to speed up
the retrieval/update time of the database.

As development progressed, a slight modification was
made to Fonden's architecture. A frontend processor has been
added to the systen. The frontend processor could be con-
nected to a local network, a host system, or several user
terminals, This will hopefully improve the system's modular-
ity, flexibility and performance capacity. The frontend
would be responsible for query optimization, transaction log,

and security checks of the database.

Statement of the Problem

The purpose of this thesis is to provide a working model
of the Backend Control Processor (BCP) for Fonden's Backend
Database Computer System, At the initial stages of develop-
ment, emphasis is placed on ease of understanding, portabil-
ity, and maintainance rather than on speed and efficiency.
The reason for this is because this is an on-going thesis
project and other students will have to pick up the system at
a later date. It is hoped that the multiprocessors alone
will give the increased performance desired, and code opti-

mization may occur at a later time.

Scope
Upon the completion of this project, the BCP should be

able to:

-

[

———

.......
......

* receive a query message from the frontend
* allocate the necessary QPs to a query o
* communicate with each QP by passing "query steps” and —
other necessary information
* receive communication from the QPs upon the completion
of a page or "query step"
* page relations into and out of each QP's IMMs Sl
* maintain bookkeeping information about the DB e
* transmit a response back to the frontend .

Due to the time constraints, the following areas will
not be addressed in this thesis:

optimization of queries -
optimization of selecting types of parallel processing
selecting the optimum number of QPs for a query
transaction log

security

backup

* % ok %k Kk Xk

NOTE: Whereever possible, hookups for the above items will

be included in the design of the BCP.

=
h ‘;‘ Current Knowledge —
- Fonden has completed a feasibility study on the overall

project (6: 67) and provided long term requirements and goals

(6: 68-73). Rogers has completed the analysis and high-level .
design of the Query Processors (12). s
Approach

The project began with preliminary study on two develop- T
ing backend database architectures, This was to aid in an _
overall understanding of the project, and hopefully point out o
some pitfalls to avoid. Next, a thorough analysis of the BCP i;
was performed with the use of Structure Analysis and Design ‘;E

Technique (SADT) (11: 62-69). Following the analysis, the

system was implemented in a modular style using the 'C' e

I.'
ool

| language on the S-100 multi-processor system. The final step :
oy
was to test the system to determine what problems still

exist.

Overview of the Thesis

This thesis is divided into 8 chapters,

Chapter 1 is an introduction to the thesis, It gives a
brief background discussion of the backend system, and de- - !
fines the purpose of the thesis.,

Chapter 2 discusses the preliminary study phase of the

]
P

thesis and insights gained by the author through the review
of existing backend database architectures. >‘{ff

Chapter 3 discusses particular problems encountered
during the BCP requirements analysis, followed by an overall 4;;;4
view of the requirements of each component of the backend

system, Finally, it gives a brief summary of the different

query step operations and BCP commands.
Chapter 4 discusses paging theory related to the backend

system, and provides ©proofs that the query steps may be

correctly split across several different query processors.
Chapter 5 discusses the local hardware configuration for
the initial versions of the backend system.
Chapter 6 discusses the data structures used throughout ;.A'.
the BCP software.

Chapter 7 discusses the algorithms for assigning query

processors to a query step, and providing system paging.)

Chapter 8 provides a summary of the thesis, and suggest-

ed areas where the BCP and backend system can be improved.

Material and Equipment

Implementation and testing for this project was done on
the S-100 system available in the computer lab. This system
consists of a Super-Quad board by the Advanced Digital Corpo-
ration (1: 1) with 64K memory, and dual 8 inch disk drives.
The operating system was CP/M version 2.2. All code was

written in BDS C (15).

.......................
...........

................................

4

]
- o
'
—nd
’

- ,,.
N ' +

. pte L

P

- e e
h e o
o .t

et
L elelalale])y

I1I Preliminary Study

Introduction

The preliminary study concentrated mainly on two other
multi-processor database systems. The first one is being
developed at the Ohio State University (OSU) under a contract
with the Office of Naval Research. The second database
system (DIRECT) is operational at the University of Wiscon-
sin, but still being enhanced.

The purpose of the preliminary study was to gain some
knowledge of other database machines with specialized archi-
tecture, This could possibly give some insight into the
design and configuration of related existing systems. The
study achieved its goal by bringing to the surface several

problems (and solutions) which were not previously

considered.

Ohio State University's Database Efforts

The OSU database employs many micro-~processors, each
with its own disk drive. The data is evenly distributed
across each processor, and the query is simultaneously broad-

cast to all processors. The results are then returned to the

controller.
The OSU technical report (8) gives a detailed report on f;:ﬁ

L

the design considerations important to their backend database

system, Not only does it discuss the development of their

v — e PR 2O S S A i /e St SRR A M A ST S Y AT A R AR

own Multi-Backend Database System, but it also includes an
excellent summary of the advantages and weaknesses of several
other backend systems. These are:

RDBM - a relational DB system

DIRECT - a multiple backend relational system

Stonebraker's Machine - a "distributed" DB system
DBMAC - an Italian DB system

* %k k kK

The report discusses several key database problems which
the author had not initially considered. The placement and
accessiblity problem of the system data dictionary became
apparent (See Chapter 3) during this review. The report also
caused a more concrete consideration of the degree of concur-
rency and the locking mechanisms of the Backend System.

One of the interesting features of the OSU System is
that it is being developed to allow linear performance growth
proportional to the number of backends employed. This dif-
fers from most systems, where the performance of each proces-
sor decreases with the addition of each new processor until
the additional overhead/cost out weights the performance
gains.

The notion of linear performance growth is interesting,
and several days were spent trying to incorporate this fea-
ture into Fonden's Backend System. It was séon discovered

that this was beyond the capability of the system because to

achieve this goal would require the removal of any decision

making algorithms from the controller, and a way had to be

‘el .
LY 1

found to eliminate I/0 contention between the processors.

e

Because Fonden's architecture does not have a linear

L .
SRR

10 Z;?

A .
LR

L e, W,

performance growth with the addition of each QP, it is con-
ceivable that the backend system could become saturated.
Upon realizing that the Fonden system had an upper bound,
while OSU's system could grow (theoretically) forever, the
author considered abandoning the thesis because it would
soon be obsolete.

In the real-world, Fonden's system should be able to
handle a reasonably 1large number of QPs before becoming
saturated, and is capable of surviving the loss of a QP,
whereas on the OSU system the loss of a QP also means the
loss of part of the database. Thus, any output relations
created on a partial system would possibly be incorrect. So,
while Fonden's architecture has an upper bound on its growth,
it 1is 1less vulnerable to hardware failure and does indeed

have a future in database management.

DIRECT

The second system studied was the DIRECT (3) (5) system
of the University of Wisconsin. This was choosen because it
is very similar in design to Fonden's systenm, Both systems
use a Controller Processor to supervise many micro-processors
that share a commom memory unit. The major difference bet-
ween the systems is the location of the database files. In
Fonden's design, the backend system has its own dedicated
storage device (accessable only by the backend). In the

DIRECT architecture, it appears as if the database files are

.....

—_—— a2t

stored on the host system's disk drives, thus the host system
i a must perform the actual paging of data into and out of the
backend memory unit.
The Controller in the DIRECT system performs the follow-
i ing major functions: .
* creation/deletion of relations
* packet (task) assignments to slave processors
* memory management
" These are essentially the same major functions provided by
the BCP in Fonden's System.
The review of the DIRECT system did not turn up any
i additional problems not already discovered, but did mention

some of the same problems. It also mentioned that the hand-

ling of interprocess messages was one of the most complex

i ';7 areas within their systenm.
Summary B
. The reveiw of other systems stressed the importance of i;é;

hardware restrictions, but neither dicussed detailed methods
for recombining the output of several processors into a

single result relation. The preliminary study made the auth-

)

’ or aware that data paging and bus contention would be major 21

. problems to any ‘urther design, and that special attention

: should be given in these areas. fﬁfﬁ

! - -
-

)

d

N R A

..... - Pt it S et i N S St a4 LA At L LR anh S S NN Y

’
IIT Functional Requirements Analysis
of the Backend Control Processor y
Introduction -
This chapter will discuss specific problems encountered ’
while performing the functional requirement analysis of the
BCP. Briefly, it covers:
* the addition of a frontend to the Fonden architecture '
* the functional breakdown of a conventional DBMS
* the major responsibilities of each major component in
the backend relational database computer system
* the location and accessability of the Data Dictionary N
* handling of update type queries e
* modification made to Roger's Query Processor analysis ’
* summary of query step operations
Appendex C contains the Structure Analysis and Design Tech-
‘:; nique (SADT) and the Data Dictionary developed during this r;~;
A d 1
study. ,;}i
Addition of Frontend =
PR |
Upon beginning the functional requirement analysis for T
]
the Backend Control Processor (BCP), several major problems -4
began to arise, One of the foremost was the fact that R
»
Fonden's architecture required a very tight coupling with the -
host system. He assumed that the host would be passing down E{‘)ﬁ
an optimized query tree to the backend database system. R
»

There are several problems with this structure. First) 1

is the fact that it defeats one of the reasons for using a

backend computer; that is modularity, the ability to easily

replace the host system and still have an intact DBMS, Any

13

F B new system would require programming to enable it to pass a
‘ complex tree structure rather than a simple query message.

The second major problem is the location of the database
data dictionary. The data dictionary should be placed with
the database, but the host system needs access to it to be
able to optimize the query. This means that the host system
must be able to access the backend's mass storage device, or
the backend must download the entire data dictionary to the
host system., Both options have undesirable side effects.

In an attempt to isolate the backend system from the
host system as much as possible, a frontend processor was
added to the architecture, Its initial function was the

optimization of queries, but as the functional requirements

of the system were studied, other functions were assigned to

the frontend.

1 In the modified architecture (See Figure 2), the j‘i?i
i N
» Frontend (FE) 1is connected to the host system. Incoming 1

queries and commands are validated (and optimized) by the FE.

The FE must access the database data dictionary to be able to

‘

]
* perform these functions, so it is directly linked to the Mass ',.jj
_]
Storage Unit (MSu). The numerous IMMs of Fonden's o
; architecture are replaced by the Memory Buffer Unit (MBU), P
! h

but it still serves the same basic function; provide a fast
scratch pad for the QPs. The BCP does not need to directly Q$fiﬁ
access data on the MSU, but it must be able to control the RN

system paging and file creation/deletion process,

(RS RS NL AR AR s el dd s g
o
1

14

.- .. Y RO SO
AP . . A i . Ce - e S N e A et T e ey e e N PRI SV
St PRI ST e e iy St St et et e et Sate P AP PV VR W PR P PR PP O PP VPR V. PO

LA e o o an o
A

—_— vv—n e
’ . .

L

Host,
Network,
or CRT
Frontend
-
-
-
—
J(~
-
Backend Memory
Control Buffer
Processor Unit
| L !
Query Query e e Query
Processor Processor Processor
[] |

Figure 2. Modified Physical Design of Backend System.

Functional Breakdown of a DBMS

With the addition of the frontend (FE), it became neces-
sary to reevaluate the entire functional relation of each
component in the modified backend system. Several unsuccess-
ful attempts were made to determine the operations of each
component, and it became apparent that a new mode of attack
was needed to help solve this problem.

It was decided that a functional breakdown of a conven-

W~

tional single processor DBMS would reveal the logical modules
of the system (See Appendix B)., This breakdown was completed
only at the highest level to serve as a guide to enable a

modular breakdown on the multi-processor system, The major

functions of a DBMS are:

get query L
analyze syntax e
verify access U
log transaction :
optimize query

execute query

manage Data Dictionary
send answer

k k N ok kK k ok X

After succussfully breaking the DBMS into its functional "
units, it is a simple matter to map the functional operations
into the hardware components of the Backend Relation Database
Computer System. (

On a large database, the "execute query" step is the
time consuming process, and it is this step that the multi-

processor architecture is aimed at reducing.

Frontend's Responsibilities S

The FE's primary job is to optimize the query. To do

®

this, it must first receive the query and analyze the syntax.
Since it is wise to catch errors at the earliest opportunity, 1;'}3
access verification should be done prior to optimization. It)

|]

also seems prudent to log the transaction in its original

form (rather than as a complex query tree), Given these

guidelines, it is reasonable to place all of these DBMS

functional operations on the FE. Because the FE must communi-

16

T <
...

cate with the host system to receive the query, it is logical
to have the FE send the results back to the host. Last, the
FE 1is the only processor that requires access to the Data

Dictionary. Therefore, it must also manage the Database Data

Dictionary. Given these requirements, the FE must:

* communicate with the outside world (receive query and
send replies)
§ * communicate with the BCP (pass down optimized queries
i and receive responses)
* communicate with the Mass Storage Unit (MSU)
[(read/write file; delete files)
analyze syntax of a query
verify access rights of a query
log transactions
optimize the query
manage the DB Data Dictionary

x & Kk k Xk

[In fact, the FE has become a single processor DBMS except for

the "execute query" function.

Backend Control Processor's Responsibility
The BCP's primary job is to provide control of many QPs.

This is largely unchanged from Fonden's original proposal (6:

109-113), except that the BCP can dispense with query valida-
tion, and now the BCP talks to the FE instead of the host
system. In light of the modified architecture, the BCP must: »
* communicate with the FE (receive queries and send Sl
responses) AR

* control the MSU (tell it what and where to read/write e
into the MBU; create and delete files) Ty

provide job control

* control the QPs (tell them what step to perform; where ®]
to read/write data in the MBU) L
* manage QP allocation T
* manage system paging e
* manage creation/deletion of temporary relations e
* e
L3

1
A _"
17 eR

r
?
k
{
L
i-
"

s o Yy
- A it

g _useaa s eas

P A A A

.......

Query Processor's Responsibilities

The QP's primary job is to provide relational operations
on a page of a relation, This is unchanged from Fonden's
proposal, although minor modifications were made to Rogers'
analysis. The QPs are not interested in where the data comes
from or where the output goes. They simply perform a specif-
ic relational operation on a specific page in the MBU, and
store the results in another page within the MBU, The QPs
must be able to:

* read/write into the MBU

* communicate with the BCP (receive query steps and

paging information)
* perform the necessary relational operations

Mass Store Unit's Responsibilities

The MSU's primary job is to provide permanent storage

for the database, and provide a file control mechanism (ie.
the ability to create, delete, and append to a file). It
must be able to:
* read/write into the MBU
* communicate with the FE (receive/send files and DD)
* communicate with the BCP (receive directions about
where to read/write in the MBU; receive command on
creation or deletion of files)

* provide file control commands (create/delete/append)
* provide a permanent storage media

Memory Buffer Unit's Responsibilities

The MBU's primary job is to provide a fast buffer stor-
age for the QPs. Ideally, any QP could access any page in

the MBU allowing pipelined operation and shared pages. The

MBU is what Fonden described as the IMMs in his proposal, but

........

-

L SN
RO i

‘d i p————— r T - ———— ——— s - - -~ Y w X w— = % — -—
Cafiit i e S At A Sl i SR i S PR YR Y.y, ~"T FaCE, T SR

the paging buffers should be thought of as a single component
rather than as many small separate units, thus the change in
names. It must:

* allow the MSU to read/write to any buffer page

* allow the QP to read/write to any buffer page

* provide approximately 8 pages (or more) of buffering
per QP

Location and Accessibility of the Database Data Dictionmary (DD)

One of the major concerns of spl{ﬁting the database
manager across multiple processors was where to locate the
Data Dictionary for the database, After much discussion and
study, it was decided that by including certain critical data

in each query step, only the FE processor would require

access to the DD. Hence the DD is placed on the FE, where
the most critical need exists.

There are obvious advantages in having only one of the

processors accessing the DD. These include not having to
provide a locking scheme on the DD, reducing processor commu-
nications (to access the DD), reducing storage requirements

on the other processors, and eliminating the need to propa-

gate changes in the DD to multiple processors., The draw-
backs are requiring the FE to do more bookkeeping during the

query tree build, and increasing the size of the query steps

- e,
S

being passed between processors,
Since the FE has already insured that domain boundaries

are not crossed (e.g. compare 'city' with 'num_of_workers'),

)- PR .,
) el e e
: . st

and that illegal actions on an attribute are not performed

S SANh G S S Anen e so SN e B e Re e jeg) Nl Mg Jenl et At e je Jumet Gie T onr Sute 4 S e i & R By J0AMILGLEM T INOL Shvih e Sinsh S o o N aOu e i G JEN SV STIA SIS S S A s

(e.g. sum a character field), the BCP and QPs are not re-
quired to make these checks and do not need most of the
information stored in the DD. The BCP simply needs the name
of all DB files to be accessed in the query (which it would
require regardless of the DD location), and the size (in
pages) of each file. This is because the BCP's function is
largely to provide paging control of the files, which does
not require knowledge about the contents of the file. The
QPs need the starting address and length of each attribute
field accessed (12: 39-69) (if working on fixed records), or
just the attribute field number (if working on varying re-
cords). This is because the QPs simply need to know where to
stop and start in comparison/modifications of a field, and
are not concerned with the contents of data in a field.

ii As mentioned above, this requires additional bookkeeping
= by the FE while building the query tree, and is implementa- e

tion-dependent (a detailed account is given in Appendix D).

Handling Update Type Queries

On the first attempt at the functional analysis of the
BCP, file updates and file retrievals were separated into two
different functional areas. The reason for this was because
b Roth's Query Optimizer was designed with retrievals in mind, -
but provides little directions for updates. On subsequent
reviews in this area, the discussion of whether retrievals

- and updates should be treated as a single function or as two -

20

T —— PR uE S e - ame et vate - - . T — LI M N A s S A s i e M A S PR i e PER vt AU SRR AP -

-r Ty

A
b

separate functions was questioned. It was decided that the
decision should be based on functional requirements and not
on existing tools (although during implementation the reverse

may be true). Further study determined that the paging

requirements were basically the same and there were no major
differences between the two types of operations from the BCP
view,

This means that Roth's Query Optimizer (13: 51-78) must - f:
be modified to handle updates as well as retrieval requests,
or that wupdates must be performed in the form they are en-

tered. Because an update request may only modify a single -

relation, it will generally consist of only a single node and

will not require optimization. Therefore, there should be no

DMKl il
LT

ﬁ 't:' problem in placing the update requests into a tree form.,

Pi IR
! .".."."- a ',- ",

Modification to Rogers' Query Processor Analysis

While developing the paging algorithms for the BCP to
handle the different relational operations, it became appar- -
ent that changes would be necessary in the design of the QPs,

Rogers discussed the relational operations he believed were

essential on the QPs for the Backend System to operate (12: - - -
36-40). The following changes are needed to the QP to pro-

vide the support the BCP requires:

B U
Clete e Y

? * "average" is replaced by a "sum" operation .
. #* "compress" is replaced by "sort" and "union" R
” operations SO
X * modify "insert" with a union type operation which e

- reports dupilicate keys R
} . * "intersect" is added Vo

* modify "min/max" operation to return a value, not a

tuple ool
* modify value~returning operations to provide the -l
answer in the response message, not as an output o K
relation RO

A brief justification for these changes is given below, with

detailed paging requirements discussed in a following chap-

ter.

Replace Average.

The reason for eliminating the "average" operation from ’.-
the QP operations is because the "average" requires the QP to
maintain information across the entire relation, not just a S
»

single page at a time. It is impossible for the QP to take
the average of each individual page and produce an overall
average for the relation. This means that either the "aver-

‘[f " ;flﬁ

age operation must be removed from the Data Manipulation

Language (DML) or an alternative method must be found to
provide it, Two workable alternatives are discussed:

* a weighted average
* a sum operation divided by the count

In the final product, a weighted average should be implement-

ed, but for the current system, a "sum"

operation shall be ®
added to the QP. The BCP will have to compute the average by

dividing the sum by the tuple count.

Replace Compress.

The "compress" operation is removed for the same reason

as the "average" operation; a reasonable paging algorithm

AT does not exist, In its place are two operations; "sort" and

W WTYIVITTTOTERYY Y vV vy
T |'

"union”. The reason behind this is that it simplifies the
removal of duplicate tuples (keys). To remove duplicates,
each tuple must be compared against every other tuple in the
relation, By sorting the data, duplicate tuples will be
ad jacent to each other and can easily be removed during the
sort phase. The reason both a "sort" and "union" operation
are required is because a QP cannot sort the entire relation
at once. It can only sort the portions of the relation which
are in memory. Therefore, each QP can sort a portion of the
relation, and then each of these parts can be unioned to-

gether with a merge sort algorithm,

Modify Insert.
.:’ The "insert" operation discribed by Rogers (12: 52-53)

is essentially a "union" operation of a single tuple into an
existing relation with an error reporting capability for

unwanted duplicate keys. The "insert" operation should be

expanded to allow the insertion of an entire relation, This ;ﬁnjﬁ
way, the user would be able to insert multiple new tuples

into an existing relation with a single query. The reason

]

- o
for this modification 1is to reduce the cost of inserting ' ;
tuples, but ©because duplicate keys must be reported, the li

. ',.’ : 1
modified "insert" operation requires two output files (the [}

output relation, and a duplicate key error file), This
changes the ideal page ratio of the MBU per QP from six to

eight.

.........

.......................

Add Intersect.

An "intersect" operation is added to the QPs because it
is easy to implement, and a powerful operation. An "inter-
sect” is a subfunction of a "join". It requires both
relations to be identical in attribute types and order, and
selects only tuples where all fields are equal. While an
"intersect”" could be achieved through the "union" and "dif-
ference" operations, it is simpler to include it as an indi-

vidual operation.

Modify Min/Max.

Rogers states that the "minimum/maximum™ operations
return the tuple with the smallest/largest value. It does
not state what happens if many tuples have the same min/max
value, Since most other relational system return a value
rather than a min/max relation, the "min/max" operation will
be modified to return the smallest/largest value of the

relation, not the tuple(s).

Modify Value-Returning Operations.

Rogers thought that the QPs should not pass "small data
items"” directly to the BCP because it is unfeasible for the
BCP to consolidate the answer of several QPs. The reverse is
actually true. It is easier (and faster) to consolidate
single value answers from several QPs than it is to provide
the additional paging scheme needed to make a second pass

over the resulting output relations. Therefore, operations

24

5
]
R
il
[
.]
"
1
1
4
e
’ 1
R
A
P
.
- e
|
Y
]
=~
S
AR
»

LA}

-mF .0
~
L T

which provide a single answer value (such as "count", "sum",
"min", and "max") will return the answer in the response

message, and not in a output relation.

Summary of Query Step Operations

The 1initial version of the backend system will have 15

different query step operations., A brief discussion of each
operation and its classification is given here, For a more
detailed discription, reference Ullman (1l4: 152-156) and
Rogers (12: 39-69). Each operation 1is classified as either
a retrieval or update type operation, Retrievals may be
performed on temporary and/or base (permanent) relations, and
any output relation will be a temporary relation. Updates
may only be performed on base relations, and their output
relations replace the old base relations,

The first group consists of "unary" relation operations,
and the second group consists of "binary" relation opera-
tions. The following definitions are used in describing the
operations,

* gelection criterion -- A set of boolean (ANDs and ORs)
conditions to allow comparison of an attribute field value

against a constant or different attribute field value,

* attribute list -- A list of attribute field
identifiers.

* modification list -- A list of attribute field
identifiers followed by a new value to be stored in the
field.

25

- s

e e A . el TSI A i e g - N S B el g N S St S A A Y e Teacane o e S e & ACe Sy B AC I I dL AT S it Bt S Ja o AR i ave el oas o

Unary Input Relations

Select (retrieval) -~ Given a selection criterion, copy
any matching tuples into the output relation,

Delete (update) -- Given a selection criterion, copy any
tuple not matching the criterion into the output relation
(remove those that do match).

Modify (update) -- Given a selection criterion and a
modification list, modify the specific attribute fields of
any matching tuple, and store in the output relation.
Otherwise, simply copy the unchanged tuple into the output
relation. Note, the modification list cannot contain key
fields,

Count (retrieval) -- Given a selection criterion,
increment a counter for each matching tuple. Upon
encountering EOF return the total count to the user.

Project (retrieval) -- Given an attribute list, reorder
the tuple's field value to match the new attribute list and
remove any fields not listed. Write the modified tuple to
the output relation.

.. Min (retrieval) -- Given an attribute list, perform a

‘:/ project, except instead of writing the modified tuple,]
compare it against the currently smallest tuple found,
keeping the smaller tuple. Upon encountering EOF return the
smallest tuple value,

WUy

Max (retrieval) -- Same as "min" except maintain the
largest value.

Y e e

PR S
N S
e i PR .
NIV el .

Sum (retrieval) -- Given an attribute list, maintain a
sum of each attribute field. Upon encountering EOF, return a
tuple containing the sums in the order of the attribute list.
It is an error to attempt to sum a character field.

, -
PR

L N B

Sort (retrieval) -- Given an attribute list, sort the
relation based on the order of the attribute list, If no
attribute list is provided, sort the relation on its current
order.

-»
o ORI

Binary Input Relations

Product (retrieval) -~ Provide the cross product of two
relations by concatenating each record in the second relation
to the end of each record in the first relation,

26

T —— B e are ane e B i e e e -me o - " - LR R A e T T T T T ™

Join (retrieval) -- Given a selection criterion, perform
a combined "select™ and "product" to form an output relation.

Intersect (retrieval) -- Perform an intersect operation
on two relations with identical attribute lists,

Diff (retrieval) -- Perform a difference operation on
two relations with identical attribute lists,

Union (retrieval) -- If the output relation needs to be
sorted and/or duplicate keys must be removed, perform a merge
sort algorithm. Otherwise perform a file concatenation. This
operation is only valid on two relations with identical
attribute lists.

Insert (update) -- Take a base relation and an "insert"
file and perform a "union" type operation generating a new
base relation and a duplicate key error file.

Summary of BCP Commands

The BCP commands are provided to allow some external

control of the BCP's actions. They essentially provide the
(» user the capibility to break out of the query. Any command
to the BCP is verified and validated by the FE, and will only

allow a user to affect his own queries. The initial set of

BCP commands are:

stop query

start query RN
abort query LT
change priority o
status ’

k ok Kk k kK

The "stop query" command will allow a user to halt any

of his queries currently in the system. The command causes a
specific query to be removed from the active task pool and !_'i

placed into the inactive task pool. Any QPs working on this

query will be preempted by other active tasks,

The "start query" command is used to restart an inactive

1w
. ot e
Tt PRI
) GEPV G S Y] e e

27 R

Podatht ey A\ St PR A Jaaa et s e S SRe g S o <o/l "l A AR e S N N A i e e ate At e

query. It moves a specific query from the inactive task pool
to the active task pool.

The "abort query" command deletes the query from the
backend system. Any QPs currently working on the query are
preempted.

The "change priority" command allows a user to change
the priority of a specific query.

The "status" command returns the current status of a
query. This would include its location in the queue, number
of QPs acting against the query, number of query steps left

to process, and current task pool (active/inactive).

! . o
Lo
A. '--'-~.~
. . --'.-.
N e
; - ',-.'.4
N
b

A J

L

&

o e e
PRPRYRY DYDY

b IV Paging Theory -
)

: i

. Introduction -

L s

i Since the backend system intends to break a query down f‘

into query steps, and then further split the query steps

a between "independent" query processors, it would be nice to

a)

insure that the results are the same as if the work were
performed on only a single processor. Since there are many
references on query optimization (13: 51-78) (l4: 268-283)
which deal with the breakdown and reordering of individual
query steps, this part of the proof will be dispensed with.
The chapter will proceed with confidence that the query can
‘“, correctly be formed into an optimized query tree. .
It must proven that all the query processor operations
can be split among individual query processors and rejoined
to provide the same results. Those operations are:

select N
delete]
modify
count
project
min) 1
max -
sum Lo
sort IR
product B
join
intersect .
difference L
union N
insert RS

dk ok ok ok &k %k % N dk x % ok ok Kk Xk

-~ In all the following proofs, R is defined to be an S

29 R

- T I T T e T TSP SN S
iR LI AL O Y SO R TN ST SN ST IURE SPUE R B R e A AT S . B NPT AP A NP oBE N

ST S S N g PR e T T T e T N
DR % S S ST S AP PP AP ALY &) G LIPS PR P LT IR, PPV AP P CAPLIPN. VPP L PP, P PRV .

arbitrary relation, which can be split into disjunct
n
subrelations Rl1, R2, R3, ... Rn such that R = U Ri,
i=1

S is defined to be an arbitrary relation which can be split
into disjunct subrelations St, S2, S3, ... Sm, such that

m
S = U Sic

i=]l
Select

n
Select (R) = U Select (Ri)
i=l
Proof: Show that
(1) Left Hand Side (LHS) € Right Hand Side (RHS), and
(2) that RHS C LHS.
(1) Let x € LHS. So that x € Select (R), thus 3 r € R such
n
that x = Select (r)., Since R = U Ri, and r € R, then for some
i=1

j between 1 and n, r € Rj. Thus Select (r) € Select (Rj).

n
Since Select (Rj) € U (Select (Ri)), then
i=1

n
x = Select (r) € U (Select (Ri)). Therefore the LHS<C RHS.
i=1

n
(2) Let x & RHS. So that x € U Select (Ri), then for some
i=1

j between 1 and n, x € Select (Rj), thus § r € Rj such that

n
x = Select (r). Since r € Rj, then r € U Ri, so that
i=1

30

4
.Y
T d
T4
n
- 4
'
F
4
L
p
1
1
: E
4
4
' 4
4
[E——
)
. 1
“ v

n
x = Select (r) € Select (U Ri) = Select (R). Thus RHS € LHS.
i=l

Since the LHS € RHS and the RHS € LHS, they are equivalent.

Delete
n
Delete (R) = U Delete (Ri).
i=l
Since the "delete" operation is essentiallly a "select"
operation with the selection criterion negated, its proof is

the same as that of the "select".

Modify
n
Modify (R) = U Modify (Ri).
i=1
The "modify" operation uses a "select" criterion to determine
which tuples to modify. The modification of a tuple is
independent (since keys cannot be modified) of the selection

order or modifications of other tuples within the relation.

Hence, its proof is the same as that of the "select". SR

Count

n
Count (R) =X Count (Ri).
i=]

Count also uses a "select" criterion to determine whether or g

L

not to count a tuple. Since addition 1is associative and N

commutative, the grouping and order for tallying matching ROt
tuples is irrelevent. ‘

. -4

ey

EEN &

]

31]

L

e

Y T T

T T W T P Ve Y T T T T T YTy R A A Sant o Aa el i daslh malh Jadh e

Project

n
Project (R) = U Project (Ri)
i=]

Proof: Show that (1) LHS € RHS, and (2) RHS C LHS.

(1) Let x € LHS., So that x € Project (R), thus J r € R such
n

that x = Project (r). Since R = U Ri, and r € R, then for
i=l

some j between 1 and n, r € Rj. Thus Project (r) € Project (Rj).

n
Since Project (Rj)C U Project (Ri), then

i=1
n
x = Project (r) € U Project (Ri). Therefore LHS C RHS.
i=l

n
(2) Let x€& RHS, So that x € U Project (Ri). Then for some
i=]

j between 1 and n, x € Project (Rj). Thus J r€ERj such that

n
x = Project (r). Since r € Rj, then r € U Ri, so that
i=1

n
x = Project (r) € Project (U Ri) = Project (R).
i=l
Therefore RHS & LHS.
Since the LHS<C RHS and RHS € LHS, they are equivalent.

=
[N
=]

n
Min (R) = Min (Min (Ri))
im]

The "min" operation is a "project"™ operation that returns the

value of the smallest tuple within the project. Since the

-"

A

.
[PR S

> e

minimum function is associative and commutative, the grouping

and ordering of the tuples is irrelevant, , -
Max
n L
Max (R) = Max (Max (Ri)) . RS
i=l A
The "max" operation is the same as "min" except that the L
largest value is returned.
Sum ,. -
n -
Sum (R) =3 Sum (Ri). .
i=1 . ;
” ’

The "sum" operation uses an attribute list to determine which o
fields to sum. Since addition is associative and commutative,

the grouping and order is irrelevant.

Sort

Sort (R) = R,

[P

Because the '"sort" operation simply reorders the relation

’J.
without changing the set, the set is equivalent regardless of v{ﬁ
ordering. s
[
Product }
n m L;lﬁ:
Product (R, S) = U (U Product (Ri, Sj)). L
1=l j=1 :
i
Proof: Show that (1) LHS € RHS, and (2) RHS € LHS.
(1) Let x € LHS. So x € Product (R, S) thus 3 r € R and
. ,
- 3 s € S such that x = Product (r, s). Since R = U Ri and L

i=1

33

r € R, then for some k between 1 and n, r € Rk. Since
m o
S = U Sj and s € S, then for some 1 between 1 and m, s € S1. e
j=1
Then Product (r, s) € Product (Rk, S1), and
n m
Product (Rk, S1)C U (U Product (Ri, Sj)). Thus
i=]l j=1
n m
x = Product (r, s) € U (U Product (Ri, Sj)).
i=1 je=l
Therefore the LHS &€ RHS.
n m
(2) Let x € RHS. So x€ U (U Product (Ri, Sj)). Then for
iml j=l

some k between 1 and n, and some 1 between 1 and m, -

x Product (Rk, S1). Thus J r€ Rk and s € S1 such that

14 PR AL
it e e e e
' . ot . S

n
x = Product (r, s). Since x € Product (Rk, S1), then r € U Ri
i=]

m n m e
and s € U Sj. So x = Product (r, s) € Product (U Ri, U Sj) -.
j=1 i=1 j:l

= Product (R, S). Hence RHS C LHS.

L Since the LHS € RHS and RHS<€ LHS, they are equivalent,

Join

- n m
: Join (R, S) = U (U Join (Ri, Sj)). "
imsl jml o

The proof for "join" is the same as for "product".

34 :}:“

.. .
Intersect
n m N
Intersect (R, S) = U (U Intersect (Ri, Sj)). >
i=]1 =1
Because the "intersect” operation is a special equivalence
join, where the order and number of attributes in both _ ,
[
y relations R and S are identical, it is proven by the "join" '
{ operation's proof.
Diff ’
‘ n :
1 Diff (R, S) = U Diff (Ri, S). _
i=l N
[.
Proof: Show that (1) LHS € RHS and (2) RHS < LHS. e
»
{ (1) Let x &€ LHS. So that x € Diff (R, S), thus 3 r€ R such S
. n
4 that x = Diff (r, S). Since R = U Ri, and r € R, then for R
b - i=1 - o
| €]
1 some j between 1 and n, r € Rj. Thus Diff (r, S) € Diff (Rj, S).
Y n -
b Since Diff (Rj, S) € U Diff (Ri, S), then _
‘ i-l —-;u‘-
t n
F x = Diff (r, S) € U Diff (Ri, S). Therefore the LHS & RHS.
! i=1
n)
' (2) Let x € RHS. So, x € U Diff (Ri, S). Then for some j L
i=l S
; between 1 and n, x € Diff (Rj, S). Since x € Diff (Rj, S), L
then J r €Rj such that x = Diff (r, S). Since r € Rj, then '
n n S
r€ U Ri, so that x = Diff (r, S) € Diff (U Ri, S)

i=1 i=1 L
= Diff (R, S). Thus RHS & LHS.
Since LHS € RHS and RHS € LHS, they are equivalent.

Union
The purpose of the "union" operation is to join files

together, Because of this, it will not be split across

processors.

Insert

The "insert" operation is the same as "union". f;f;i

}
!
. b
| SN ST Y

‘% .

ey
. e -
P Sy B |

36

L e T B N N A A PC N e
T e e e e a A L‘.:_g' ‘1(‘1' —x et .1':_4'.. -L‘..-':‘ et ‘l':l" N A N A AN A W S A VP N L v

A A~ M e i T Y T N W N LA P N N i et Sl A G S T G SR g S AT R S

V Local Hardware and Restrictions
Introduction

Rather than purchase the expensive specialized hardware
necessary to implement a complete backend database system,
the initial design will be performed on equipment <currently
present at AFIT. Once a working model of the backend is
available, it will be easier to determine specific hardware
requirements needed to improve performance. This chapter
will discuss the available hardware at AFIT, and the compro-

mises necessary in the overall design of the system,

Developement Hardware

The initial version of the BCP was developed on an S-100
system with the CP/M version 2.2 operating system, and the
BDS 'C' compiler. This should make the BCP transportable to
any system capable of running CP/M and with minor modifica-

tions to any system supporting a 'C' compiler. The S-100

system included:

* a dual 8 inch double density floppy disk drive
* Advanced Digital Corporation "Super Quad" card (1) =]

with: R
Z2-80A cpu (4 MHZ) ST
Floppy disk controller]
64K of dynamic memory R
2 serial ports ‘I

2 12 bit parallel ports

—y B Py Ty W P— ———

’

Parallel B
Port

‘\l— 2-100 »
Y L (BCP) q]
erial RSN
jJ U — Port e
SR

I ‘ll: , »
Super Quad Slav Slave]
| (FE & MSU) (QP) (QP) .
S-100 Bus i l i_ 4
Slave Slave ' E
; (QP) (QP) S

Figure 3., Initial Developement System Configuration.

Initial Configuration

The BCP was designed so that upon completion, it could
i be moved to one of the Z-100 systems. The S-100 system could ; '

be wupgraded by the addition of four Advanced Digital Corpo-

ration "Super Slave" cards to create a multi-processor sys-
! tem. The remaining components of the backend would be housed »

within the S-100 system. The "Super Quad" card would become

the FE and the MSU, and each "Super Slave" card would become
J a QP. The floppy disk would provide the physical storage (See !

Figure 3). Each QP will communicate with the BCP through a =

’, '
[
. L R
D I RLIN LS S P e

L Dt e
PR

YA
v
.{.l.'.‘-‘,"y
PR

o

serial port, and send/recieve data pages over the S-100 bus.

The BCP is also connected to the "Super Quad" (FE) card via a

38

serial and parallel port. The serial port will be used to
send disk commands, while the parallel port will be used for
communications with the FE, The reason for using separate

ports 1is to create a logical difference between the FE and

the MSU to allow for future expansion,

Drawback L 1

There are two major drawbacks to the initial system

L :

configuration. First, all disk I/0 must pass thru the FE B
processor. Second, there is no MBU, o
Initially, the FE and the MSU (disk) will both be on the -
®

"Super Quad” card. During initial development (i.e. while an

P P)

actual database does not reside on disk), this should not
present any problem, But once the MSU actually begins paging

data in and cut of the QPs, this processor will become the

—y

bottleneck of the backend system. Even without the FE on the S

re

"Super Quad" card, it is expected that the MSU will be unable

-:
o

to supply the data pages to the QPs as fast as the QPs can

P
2o

process them. This means that even without the extra burden

Y

the FE places on the "Super Quad” card, the QPs will fre-
quently be idle waiting for data pages.

The second problem with the initial configuration is the
lack of an MBU, Because of this, a minimum of eight logical

pages of memory in each QP must be reserved for data buffer

Ak h

space. This restriction interferes with the backend's abil-
ity to allow pipeline query step processing. The "Super

Slave" cards are not able to activate the S-100 bus, so data .::fu

39

L A S sumaume 2etee sen mea

may not freely pass between QPs. This means that as a QP
finishes a page of output data, the MSU must read the page,
and rewrite it into the follow-on QP data buffer. Because
the paging algorithm was designed to operate on shared pages
in the MBU, and not copy data between buffer pages, the
initial version of the BCP will not handle the pipelining of
query steps. This restriction should be corrected at the
earliest opportunity since efficient pipelining would ease

some of the MSU bottleneck.

Alternative Configuration

An alternative configuration is included here because of
the notable shortcomings of the original configuration. This
alternative configuration is provided more as a thought pro-
voking concept than as a solution. It is hoped that any
follow-on investigators will accept the better ideas pre-
sented here, and reject those for which they can devise a
superior architecture,

The alternative <configuration includes an additional
micro-processor with its own disk drive (See Figure 4)., The
FE would be placed on the new processor, and the database
data dictionary would be stored on the disk. This would
allow the FE quick access to any information needed for query
optimization while reducing the burden of the database MSU,
The "Super Quad" card would then contain the MSU driver,

while the bulk of memory on the "Super Quad" card would then

40

PN

P

become the MBU.

Parallel Port

".‘‘n‘.-."l..

W
Z-100 or 1 z-100
LSI-11 L (BCP)
(FE) T~
Serial
Port
<
DB | Super Quad Slave Slave
Disk (MSU &MBU) (QP) (QP)
S-100 Bus ;
-
/
kESIave
(QP)
Figure 4. Alternative Developement Configuration.

.............

............

- - .

~a P —— BunSare A e S A Saut e Jeme s S e S gt A o e v e o

VI Data Structures

Introduction

There are numerious data structures used throughout the
BCP. For the reader to gain a firm understanding of the BCP
software, one must first understand the data structures and
the utilities provided to manipulate them, This chapter will
discuss the following major data structures plus the sub-
structures of which they are composed
task tree
message queues
frontend structures
query processor structures

mass store unit structures
system status structure

Kk o K ok Kk Xk

Each structure will be discussed in a bottom-up approach,
followed by a short explanation of modules designed to oper-

ate on the structure.

Task Trees

There are two types of task trees used within the BCP,
The first one is called "task_tree" which contains all
active queries (with their query steps & files), The second
is the "stopped_job" which has all the queries that have been
temporarily halted.

The task trees are built up from query branches, which
contain query trees. Each node in the query tree (called
query nodes) contains a query step and has pointers to its

input/output relations (See Figure 5).

42

e e e e e it s RN
e e T e e e e e e e e e e e e e e e e

.t o ® e e - % " Y “u A I . PN .
LI B I S) PP NPT Wil Bl TSt P AP TN M ShiP S S Y W)

.f' rr‘r.T'n:v. B
.

T T ————

9

Query
Tree

Input
Rel 1
(base

Query
Branch

tasktree

Query
Node

Input
Rel 2
(base)

Output Rel
(2nd file)

Query
Branch

Query
Branch

Query
Node

utput
Rel
(temp)

1st file

Query
Branch

Query
Branch

Query
Tree

Query
\ Tree

\7

Query
Node

Query
Node

Output Rel
(3rd file)

Figure 5.

43

...........

Overview of Tasktree Structure.

.................
..............

.4v. ‘.: . . N
Aaa’s aala a0 4. . .

PP Al

ISP VRIS SIS WL IPYY

L
N
i

o .
taltatal

. ‘e Ty e
.. . LR
ST ST
OISR AP |

Ao o0

P
2t ol

Within the BCP, there are two types of relations. Base
(permanent) relations, and temporary relations. Each of

these are treated differently at the lowest level.

Relational Database Files (base relations)

The base relations have all their pertinent data stored

in the "base_rel" structure. This structure contains:
rel_name -- name of the base relation.
sorted -- boolean flag:
TRUE ==> relation is sorted,

FALSE ==> relation is not sorted.

rel_size -- number of logical pages in the relation.

File List (temporary relations)

A file 1list is a logical relation, When several QPs
operate on the same query step, each QP qenerates its own
output file, Rather than physically join the separate files
(requiring additional I/O paging), the files are 1logically
combined through a file list.

The "file_list" is a circular doubly linked 1list of
temporary output relations. It consists of:

prevfile -~ pointer to previous file in linked list.

nextfile -~ pointer to the following file in the linked
list,

filesize -- size of file in logical pages.

file_id -- file identifier used by 'C' open function.

status -~ QP id of QP writing to/reading from the file
(-1 if none).

filename name of the file being written/read.

44

PR S A At Ar et e S A i . A M Jaein A te R S fen. i, b S i A SN A S A PR A e A S S RS A A
PN S e P S e PR LT

Query Node

The "query_node" structure takes all the data related to
a single query step and consolidates it in one 1location.
Thus there is a one-to-one correspondence between query steps
and query nodes. Because of this, the terms "query step" and
"node" are often interchanged within the code documentation.
: All the query nodes of a single query are stored in a
modified binary tree structure (See Figure 6). The query
% node 1is used to connect all the query steps of a query in a
logical form, and maintain information about the input/output

relations of each query step. The query node consists of:

parent -- pointer to parent node (NULL if root node).
]
rchild -- pointer to right child (NULL if no right
L child).
lchild -- pointer to left child (NULL if no left
child).

prevleaf -- pointer to previous bottom-most leaf (NULL
if this node has any children, or is the first bottom leaf).

nextleaf -- pointer to next bottom-most leaf (NULL if
this node has any children, or is the last bottom leaf in the

query).
branchp =-- pointer to query_branch of this query. ’)
stepp -- pointer to the query step for this node.

relation [3] -- pointer to the three relations (files)
accessed by this query (two input, one output),

g
file_type [3] -- indicates if a relation is permanent or o
temporary. S
..: - ‘,.‘
rel_sorted (3] -- indicates if the relation is currently SRS
sorted. i'

error_file -- pointer to the error file.

45

LS
[N LA

AR AN NI R P A A s A SRR A T T T T T T -..'_.-:.ﬁ}
*
number_qps -- number of QPs currently working this query :
Step. - - %
L4
node [0] -- dummy variable - this is where the query R,
step is actually stored. SRR

To To
Previous Next
Branch Branch R
o
back Query forward
Branch -
~

L]

firstleaf

A

Parent/Child Ptr

Next/Prev Leaf Ptr

Figure 6. Query Tree (Branch). ORI

Query Branch

The query branch takes all the data related to a query

- and consolidates it in one place (See Figure 6). There is a RS
46 e
R AU A T e e e T T N T T et e e e e e s e e T e e e e et e e e e T e e e e e > .

one-to-one correspondence between the query and the query
branch. It contains:

back -- pointer to previous branch,

forward -- pointer to next branch.

q_root -- pointer to root node of query step (query
node) tree.

first_leaf -- pointer to first leaf without children.

head_node -- pointer to query header.

bot_count -~ number of bottom-most leaves in the query.

tag_id -- tag number of next file for this query. As
files are needed for temporary storage, they are created by
concatenating <job_id> "." (tag>, where <{job_id> is the query
job identifier, and <tag)> is the tag identifier. "tag_ id"
ranges from O to 999. If this should prove to be insuffient,
alphagnumeric tags could be used instead of numberic tags.

last [0] -- dummy variable - this is where the query
header information is actually stored.

Task Tree

The task tree contains all active queries with their
associated query step and files (relations). It is simply a

pointer to the highest priority query branch (See Figure 7).

The overall structure of a Task Tree is as follows:

* the task_tree points to the highest priority query
branch in a circular doubly linked 1list

* each branch has a query header and query tree

* each node in a query tree has a query step and several
file lists

* each file list contains the names of all the physical
files that make up the logical file

Since the task tree structure is so complex, it requires
special modules to simplify its use., Below is a brief dis-

cription of existing modules designed to act on the task tree

47

Tasktree o
LN
:s
»
Query '
’
y
L
l ‘;* Figure 7. Highlevel View of Tasktree. ’
| 'y
and its components., L
rebuild_query_tree (FE_msg, Branch) %{x
Takes an input query from the FE and rebuilds it into S
* a tree form (query branch), returns pointer to the »
root node. T
. place_in_task_tree (task_tree, branch) e
Adds a query branch to the task_tree. Returns o
task_tree, T
!(

disconnect_branch (task_tree, branch) .
Removes a query branch from the task_tree. Returns o
task_tree. :

trim_branch (task_tree, branch) e
Deletes a query branch from the task_tree, and | -
frees up any storage used by the branch and its e

Y

MM M SiBe Jitemvas S e

Also

CRr A Puiiireii R AL g At AR Sl Madh Rl TN A AP P AR S e ol ASRARE sdl e

components (query_nodes, file list, etc.).
Returns task_tree.

trim (task_tree)
Deletes the entire task_tree and frees all storage of
its components.

count_leaves (task_tree)
Returns the number of bottom-most leaves in the
entire task_tree,

select_high_leaf (task_tree, leaf)
Returns pointer to the next highest priority leaf
after the input leaf (if input leaf is NULL, return
pointer to the highest leaf in task_tree).

kill_subtree (query_node, rel_index)
Deletes and frees all nodes in the sub-tree of the
input node. Deletes and frees temporary files with
an index less than rel_index. By setting rel_index
equal to two, only input relations are deleted,
leaving the output relation intact so the next query
step can use it for input. By setting rel_index to
three, all files, input and output are freed.

trim_leaf (leaf)
Deletes and frees a bottom-most leaf and its input
files., Relinks the output file to the parent node as
an input relation., Return boolean; TRUE if query is
complete, FALSE otherwise.

free_files (file)
Frees storage of a logical file, deletes temporary
relations from disk,

remove_file (file, leaf)
Deletes a single physical file from a logical file.

Returns pointer to first physical file of the logical
file.

npages (leaf, rel_id)
Returns number of logical pages in file indicated by
the rel_id.

get_file_name (branch, name)
Sets name to a unique file name.

included for debug purposes are:

dump_tt (task_tree)
Dump the entire task_tree in hexadecimal.

49

...

dump_branch (query_branch)
Dumps the query branch.

dump_subtree (node)
Dumps the sub-tree beginning at input node.

dump_rel (node)
Dumps the relations of the input node.

dump_files (relation)
Dumps the file list of a temporary relation.

Message Queue

The message queue is a single linked list priority queue
for holding messages passed between the BCP and the other
system components, There are two message queues in the BCP;
one for incoming messages, and one for outgoing messages.
The structure of the message queue consists of:

m_type -- component type (FE, MSU, or QP) of source or
destination,

m_id -- component identifier number (because of
multiple QPs).

m_time -- (test value) - time message was sent/received.
This is the current priority field.

m_ptr -- pointer to the message.

m_next -- pointer to next message structure in the queue.

Removes top element from queue and frees storage.
Returns pointer to top element,

The following modules act on the message queues., ;}
- — -
add_queue (queue, message) o
Allocate storage for message and place the message T
into the queue., Returns pointer to top element of “j”:
queue,]
L 1
remove_queue (queue) “{Eﬂ

read_queue (queue)
Returns pointer to top element.

50

FE Structures

The FE must pass two types of messages to the BCP;
command and query messages. Because of time limitations, the
BCP command handling routines have not been designed in
enough detail to create a command structure. Thus no struc-
ture is shown for the command message. The query message
(See Figure 8) consists of a "query_header"”, following by an
array of "base_rels" (one per base relation accessed), and an
array of "query_steps" (one per step query in the query).
The "base_rel" structure has already been discussed in detail

under the "task_tree" structure.

Query_Header Base_Rel [1] Base_Rel (2] o o o

Base_Rel [num_in_rel] Query_Step (1] | Query_Step [2]

« o e Query_Step [num_node]

Figure 8. FE Query Message.

51

b
RS
L]
. o

<1

c - .

AT Ty

........

Query Step

A query step is a single operation to be performed on a
relation(s). The operations are discussed in Chapter 3. The

"query_step" structure contains all the information needed by

the QP to perform the specific query step operation on the
assigned pages in the MBU,

¢ Because this is a complex structure and subject to o]
_t evolve, a version number is included to allow the backend o
} system to work with multiple versions of "query_step" struc- ffi
tures if needed. The BCP only uses the header portion of the ‘
["query_step" structure, the remaining sections may be freely e

modified by the FE and/or QP design with no effect to the

BCP's performance,.

Query Step -- Header S

qs_version -- version number of the query step (should
be zero)

len_step ~- number of bytes needed to store the query
o step. Because the query step structure varies in length
- depending upon the selection criterion, modification list,
. and attribute list, this field is included to enable the BCP S
and the QPs to know the exact 8ize of each query step. T

type -- type of query step operation (i.e. R
"Select", "Project", "Join", etc.). .

rel_type [3] -- three rel_types are included because a SO
query step may have two input relations and one output IR
relation, The "rel_type" field is used to distingish between
base (permanent) and temporary relations. For "unary"
relational operation, the second input file is set to NULL.

T
e

PARRORRARY

I}
’, e,
‘h—‘JA“JJ'A "

rel_ptr [3] -- this is really an index node number,
because it is impossible to pass the actual pointer value
— between two processors without shared memory. When the FE
g passes the Query Tree to the BCP, it numbers the query steps

o

- -9
“

"9

52 o

e Sy Ty

AU IR

1)

n.‘_-._'.-‘:."--.'. .

in the order that they are sent. Later, as the BCP rebuilds
the Query Tree, the actual pointer values are computed.

Note: rel_type and rel_ptr are used by the BCP to rebuild
the Query Tree, The QPs do not use these fields.

dups_ok -- a boolean flag to determine if duplicates
are allowed in the query step.
TRUE ==> keep duplicates,
FALSE ==)> remove all duplicates.

ratio [2] -- (for testing BCP only) this field is used
by the "fake_qp" module to simulate the reduction of data for
a query step. It contains two percentage numbers: minimum
and maximum amount of data. Two examples of its use are
given here:

Example 1: On a "sort" operation, nearly all data in a
page is retained (duplicates are removed), so by setting
ratio [0] = 99, and ratio [1] = 100, the fake QP would
retain between 99 and 100 percent of all input data in
the output relation.

Example 2: On a "select" operation, a large
percent of the data will be removed. If the ratio
were set to 0 and 100 respectively, then each page of
the input relation might be completely empty or full of
"useful” data. The average would be 50 percent of the
data being retained.

Query Step ~-- Selection Criterion

The remainder of the "query_step" structure is not wused
by the BCP and will be dictated by the QP's needs and what
the FE can supply. What is given below is the author's view
of the necessary information .

num_ands ~~ the number of AND conditions which must be
met to evaluate the selection criterion as TRUE.

len_and [num_ands] -- the length of each individual AND
condition. This is provided so that the remaining part of an
AND condition can be skipped if a single OR condition inside
the AND evaluates to TRUE.

num_ors [num_ands] -- the number of OR conditions within

each AND condition. Note: an AND condition without an OR is
treated as if it had one OR condition.

53

¥ TYEENw R W O WEWORSW

- v

P TETW TTTVEET TR e s TEEN Y e §
é .
. e
»
e

................. LIAnEE Sk Sucmy st S b T T T T T T W g

Example Selection Criterion for a "select" operation:
select *
where salary < 8000 & (job = "clerk" % job = "student" 3
job != job_title) & (state < "LA" % country != "USA")

This selection criterion has three AND conditions, The first
AND has no OR condition, but is treated as if it has a single
OR condition. The second AND has three ORs, and the last AND
has two ORs, In any AND condition, as soon as an OR condi-
tion evaluates TRUE, the remaining portion of that AND may be
skipped., Likewise, if any AND evaluates FALSE, the selection
criterion evaluates to FALSE, and further checks may be
skipped.

For each OR condition inside of an AND condition, an
attribute must be compared against some other value. The
rest of the selection criterion fields deal with determining
which attribute to compare to what value.

field_type [num_ands, num_ors] -- type of data field.
It must be one of the following:
-- character string
-~ double precision
float
-~ long integer
-=- integer

-2
'
|

Note: BDS 'C' only supports character and integer variables.
Therefore, the initial version of the backend system will
only support these two data types,

len_field [num_ands, num_ors] -- gives the length of an
attribute field in bytes for fixed sized tuples. Otherwise
it is set to zero for relations with varying length tuples.
loc_field [num_ands, num_ors] -- gives the starting byte
number in fixed relations. Gives the field number in varying
relations.
Example of fixed relation:

If relation 'X' were defined as:

supply int,

job char (10),
job_title char (10),
state char (2),

country char (10);

54

L _J Voo e

- oo,
e tele Tt
- R
. P
|

el s
Aa’a’a’a s s gl

1

1
Ty
<
=
<
o

i

. vt e ’

A .“.‘ L3
L.t PRSI -
e h atatatatataa’s

1
]
3

Then if attribute field "job_title" were being used in a
v selection criterion, then ‘ g
i field_type = 'c', S
1

i len_field = 10, ’
loc_field = 123 :

Example of varying relation: RO
‘ If all (or any one) of the character strings in relation - A
| 'X' were declared as varying, then 'X' is considered a ’

varying length relation, and the attribute field "job_title"

would be: .

field_type = "¢,
len_ field = o,

NPT

t loc_field = 3; ;
Note: the len_field and loc_field fields are collectively -

known as the attribute identifier. .

oper [num_. ands, num ors] ~-- comparison operation (i.e. o

i "=", ")" "<" "' ">_ , and "<=") '. R

' field_or_constant [num_ands, num_ors] -- determines if ; B

the comparison is against another attribute field or a U]

supplied constant. S

"f" ==> field comparison; k

i C "¢" ==> constant comparison. ;f‘i

Note: for "join" operations, this should always be a field to
field comparison, and the first field should be from the first
input relation, while the second field should be from the
second input relation.

len_f_or_c [num_ands, num_ors] -- if field_or_constant =
= then this is the same as len_field. Otherwise, this is
the length (in bytes) of the following constant value.

"f"

f_or_c [num_ands, num_ors] -- if field_or_constant = "f", RO
2 then this is the same as loc field. Otherw1se, this is the
constant value being compared. IR

A 4

Query Step -- Modification List RS
' The modification 1list given here limits the user to -

assigning fixed values to attribute fields, The limit should

be removed so that a computed value may also be used if

- ..
i

b - desired.

T T T TR T T NN NN NIRRT R p——— T ————

r _ num_mods ~- number of fields to modify.

T

field_type [num_mods] -- same as field_type in selection

k criterion,

criterion,

criterion.

value to be placed in the attribute field.
attribute field.

Query Step -- Attribute List

project like operation.

criterion

criterion.

criterion.

Query Header

When a query is passed from the FE to the BCP,

sary base relations.

Zero).

array) in bytes.

56

len_field [num_mods] ~- same as len_field in selection
loc_field [num_mods] ~- same as loc_field in selection
len_new_value [num_mods] -- length (in bytes) of the new

nevw_value [num_mods] -~ the new value to be placed in the

num_atrib -- number of attribute fields to retain in a
field_type [num_atrib] -- same as field_type in selection
len_field [num_atrib] -- same as len_field in selection

loc_field [num_atrib] -- same as loc_field in selection

it has a

query header containing the information needed by the BCP to
rebuild the query into a query tree, and to access the neces-
h_version =-- current header version number (should be

num_node =-- number of query steps (nodes) in this query.

len_head -~ length of query header (including "base_rel"

~ T e e SEae Mbe T 2w S T T T T

len_mnsg -- length of the entire query message including
all the query steps.

num_in_rel -- number of input (base) relations accessed. '

ST PW T Y
1

priority -- priority of this query (0 - highest,
b 255 - lowest).

job_id -~ job identifier (must be unique).
rel_info [0)] -- dummy variable - this is where the

"base_rel" array is placed. There is one "base_rel" structure
for each base relation accessed.

Ll

The FE query message is build into a "query_branch"

i structure by calling:

. rebuild_query_tree (FE_msg, branch)

Takes an input query message from the FE, and
L rebuilds it into a tree form (query_branch). ~
Returns a pointer to the root node.

QP Structures

There are four structures in the BCP that deal with the -

QPs. They are:

query_step -- query step for the QP to execute
qp_page_info -- paging information N
qp_status =-- status of each qp ;o
query_processor -- (test only) fake QP simimulation :

* K %k Xk

The "query_step" structure has been discussed under FE ﬁﬂﬂ;

structures. This structure is passed to the QPs to direct S
the type of relational operation to perform, It includes the)
select criterion, the modification list, and the attribute

list.

QP Paging Information

The "qp_page_info" 1is used between the QPs and BCP to

o
LIPS R Y o

pass paging information. The BCP uses it to direct the QPs

AR

A et
. . AR
TS PRI |

57

as to which pages in the MBU to act against, and what type of
data is in each page (input rel 1, input rel 2, or output
rel). The QPs use the structure to request new input/output
pages. It consists of:
qp_version ~~ current message version (should be zero). e
len_qp_msg -- length of paging message.

qp_msg_type -- paging info flag. This byte distinguishes
a paging structure from a query step structure for the QP.

qp_id ~- QP identification number,
buff_addr -- page in the MBU to access.

page_type -- type of data within the page (rel 1, rel 2, .
or output rel). e

a eof -- EOF flag. The BCP sets this if this is the
. last page of the query step. The QP returns this flag after
completing the final input page.

E (W results -- results of a value returning operation. i

QP Status

The "qp_status”" structure is used by the BCP to keep

track of which QPs are working on what query steps, and which
page to send next.

active_qp -- actual number of QPs up and running.

free_qp =-- number of idle QPs. -

1 qp_idle [MAX_QP] -- boolean flag for each QP to
- determine if it is currently idle or busy.

b buff_allocation [MAX_QP] -- boolean flag to determine if
’ the QP has been allocated pages in the MBU,

3 qp_step [MAX_QP] -- pointer to current query step being
processed by the QP.

qp_start_page [MAX_QP] [2] -- starting page to process
within each input relation.

58

PN

.
rs
.

DA AR RS AL PR S eI CTL e PN R ST AP

qp_end_page [MAX_QP] [2] -- last page for this QP to
process within each input relation,

- qp?gurr_page [MAX_QP] [2] -- the current page in the
s buffer space.

qp_log_page_size [MAX_QP] (2] -- a logical page size of
each input relation.

qp_file [MAX_QP] ~- pointer to output file.

Query Processor

This structure is used to simulate a QP's processing of
a query step. It is not used in the actual system.

qs_ptr -

pointer to the query step being processed.
qp_time -- fake clock time,

free_page -~ this is an index into qppage, qptype, and
percent. It is the next available page location.

eofpage -- flag to determine if this is the last page
for this query.

qppage [BUF_RATIO] -- MBU page address.

qptype [BUF_RATIO] -- Type of page (rel 1, rel 2, output
rel).

percent [BUF_RATIO] -- percent of the page already
processed.,

MSU Structures

The MSU receives two types of messages from the BCP; one
for paging, and one for commands. These structures are used
to direct the paging and file creation/deletion of the MBU,

MSU Paging Information

The "msu_page_info" structure is used to direct the MSU
to read/write a page into the MBU., It consists of:

msu_version -- version number (should be zero).

P
S]
S 4
RN
IR
IR
;}.u&"‘“
|
i R
S
T
»

- 9
i” E
-A“.;’ 1

len_msu_msg -- length of the paging message,

msu_msg_type -- this field distinguishes paging |
information from command messages.

page ~- page number in the file to read/write.

msu_id ~- disk identification (if needed).

readflag ~- flag; TRUE ==a)> read from file to MBU,
FALSE ==> write to file from MBU.

buf_addr ~- page in MBU to read/write.

file ~- filename to read/write,)

M LA CA SRS e tu

——

MSU Command Message

The "msu_cmd_msg" structure is used to cause the MSU to ;:*S
create, delete, or concatenate files on the MSU, It consists B]
of ¢

msucmd_version -~ version number (should be a zero). {fF;

len_msucmd -~ length of command message. o]

msucmd_msg_type -~ flag to distingish command message
from paging information.

msu_command -~ command to MSU.

n_files -- number of files to act on.

files_name [n_files] -- array of file names.

System Status
The "system_status" structure is used to consolidate all
pertinent data of the BCP in one structure. This is the L

BCP's database to control what is happening within the back-

end system. It includes all the structures discussed above

plus buffer addresses, and test files,

-
e .-

I S e e '
[T PP G A NDRT {

TR

n o an as o

e A e S et

Buffers

The "buffer" structure maintains status of all input
buffers., It contains:

fe_buf -- pointer to FE buffer area.

msu_buf -~ pointer to MSU buffer area.

qp_buf [MAX_QP] -- pointer to each QP buffer area.

fe_buf_busy -- flag; TRUE ==> FE buffer is not empty,
FALSE ==> FE buffer is empty.

msu_buf_busy -- flag.

qp_buf [MAX_QP] -- flag for each QP buffer.

Test Files

There are several test files used by the BCP to assist
in debugging the program.

query_file -- file containing dummy queries,

fe_in_file -- file which directs which dummy queries to
execute.

fe_trace -~ trace file for FE messages.
gqp_trace -- trace file for QP messages.
msu_trace -- trace file for MSU messages.

rel_index_p -- index to query file page containing
queries.

time -- dummy test clock.

System Status (Structure)

shutdown -- flag; TRUE ==> shutdown in progress,
FALSE ==> normal mode.

idle -- flag; TRUE ==> all QPs are idle, and Task
Tree is empty,
FALSE ==> has some work to perform.

61

alalalate 4 .

)
[
5

i

{ iif buffer_p -- pointer to buffer structure, Ef’l?

task_tree -- pointer to Task Tree.

qp_stat -- pointer to QP status.

T v

query_processor -- pointer to qp_data.

out_que -- pointer to output queue.

T Ty

in_que -= pointer to input queue.

test_files -- pointer to test/trace files.

»
. rd
. : 1

e " 2 B 0y B Jon I CaRnchsn MM G aih AR Snt e it And A S iCh e BN S Sre sl Jebe et ol MR o/l i e A Y

VII Detajled Design

Introduction E%Eﬂ

This chapter discusses the major algorithms used by the :%5
BCP. As stated in Chapter 1, the algorithms are not designed -ij
for efficiency, but rather represents a simple-minded ap- A
proach to make the BCP operational,

When a query step is being assigned to a specific QP, i :
that QP is said to be in a loading phase. During the loading .f%
phase, a QP receives a query step message, and several paging vij
messages from the BCP. The QP cannot begin processing the ;%f:

query step until it has received at least one page from -each
input relation, plus an output page for the results and error
file (if needed).

In the initial version, each QP will only hold one query

step at a time. Thus there is an idle period between the

completion of one query step, and the beginning of the next. -
To reduce the idle time in the QPs, the assignment algorithm

attempts to minimumize the number of query steps it must load

for each query. This is done by requiring a QP to complete -
the entire query step before it can be assigned some other
operation, So, once a QP is assigned a query step, it must
single-mindedly act on that step regardless of any change of ':E;

states within the backend system. P

This restriction greatly simplifies the intelligence

needed by the BCP for QP job assignments and paging, but

63 R

e e T———s FEMECED S e aual e ars Soue L AR SN SIS s and . LALLM G SO ST I A A Y B S T

reduces the backend system ability to dynamically adjust to

J
4
r
' the 1load conditions of the database. It also requires that
s
E all input relations of a query step be completed before the

query step is assigned to a QP. This eliminates the .possi-

bility of pipelining pages through the QPs,

Once the BCP assigns a query step to a specific QP, it
must supply input relational pages to the QP, and direct
where the output pages are sent. QPs are basically simple l;
black boxes that perform specific relational operations on },& B

these pages, This means that if a QP is given a bad input

page, it will not realize the error, and will happily perform !:5'1

its assigned task, producing bad output. This being the 22;&;

case, the BCP paging algorithm must be very sophisticated and :;i:i

(reliable, or the responses to the user queries will be inva- !;.‘»“_‘j
lid (thereby making the system useless). jgiié

Because the BCP's algorithms are important, this chapter fﬁﬁ}ﬁ

will discuss them in great detail. It begins with the QP

assignment algorithm, followed by a discussion on the QP

status structure, Next is a rough description of the output

control mechanism and the paging system and its algorithms. R
The final two sections cover buffer allocation, and node ﬁff}]
splitting. RPN

. - —-d

QP Assignment

The QP assignment algorithm is called any time there is

at least one idle QP, and the task tree is not empty. To be

-

64

eligible to be assigned to a QP, a query step must be a

bottom-most leaf in the Task Tree (See Figure 9).

Step 1) The algorithm first gets a count of the number of
eligible query steps, and sets current 1leaf to NULL (this
i causes Step 2 to select the highest priority leaf within the
Task Tree).

Step 2) Selects the next highest leaf in the Task Tree after
E the current leaf.

} Step 3) If current 1leaf equals NULL or no more idle (QPs,

then it exits,

Step 4) If this 1leaf does not have a QP already operating
on it, then it goes to Step 5. Otherwise, if there are other
bottom-most leaves (query steps) which have not been assigned
‘;’ to a QP, or this is a "union"/"insert" operation, then it
rejects this leaf, and goes to step 2. If all other bottom-
most leaves have a QP processing them, then it determines if

there are enough pages left to process in this query to

warrant an additional QP. If so,it splits the query step :f%}

across two separate QPs. O

Step 5) Assigns the QP to the current leaf, marks the QP as
busy, and adds one to the number of QPs acting on this query

step.

P T eTeTeETe————n———— AP el i e

QP Assignment Algorithm
Start
r
il Num_Leaf = number of
L bottom-most leaves in tasktree
o Curr_Leaf = NULL
:;E:: b 4
o Curr_Leaf = next highest leaf
yes _—4 Exit > '
o
5 .
- T
s = um_Leaf
\e Total QP + o
- Accounted_Q g
j-.". '.‘
= no S
o Large = number of pages left :%j
Lock Files to process in the query step SR
of the QP with the most pages 1
left to process
- Assign QP yes]
S Decrement Idle_QP Decision_Valug <
Increment Work_QP N
h———————J no L; G
o : Account_QP =]
- Account QP + Work QP $;Q
: Figure 9. QP Assignment Algorithm f;f
AN S
. Cd
ve J
i 66 1

Overview of System Paging

The BCP maintains the following information about each
QP to aid in controlling the paging algorithms:

a pointer to the query step

a start page index for each input relation
an end page index for each input relation

a current page index for each input relation
a logical page size for each relation

a pointer to the output file

* % X k k ok

For the present, the reader only needs a rough idea of how

each variable 1is wused. A clearer understanding will be

\

gained after reading over the "Paging Algorithms", and look-

ing at the "Node Splitting" examples.

- The pointer to the query step enables the BCP to

"‘,".-.I o ."'. ‘
. h’,‘,“. . ,". .

quickly determine the query step type, and decide if two QPs

are working on the same query step.

- The start page index marks the first page the BCP RTij
needs to send to the QP for processing of this query step o
segment.,

- The end page index marks the last page the BCP needs

to send to the QP for processing of this query step segment.

- The current page index tells the BCP which page is

. . .",.' L et

make up a logical page for each relation.

currently in the QP, and enables the BCP to compute the next =1
logical input page for the QP, .;
- The 1logical page size tell the BCP how many pages ;ﬂ~fﬁ

. 2

- The pointer to the output file tells the BCP where to

write any output created by the QP. T

P divae Bras i 0 S S e Sh St IR -Rede St ag Mt St Jhgh M Saa el ettt B — P M e T . W W VT T T Y T Y T W T W W e W W o N T v v oW .

Qutput File Control.

E Each QP will produce only one response for each query
step 1t is assigned to act on. This means that if only one
QP is tasked to process a query step, then the output pro-
I duced by that QP is the response to the query step. But, if
the query step is divided between multiple QPs (See "Node
Splitting), then the response is the combined answer of each
z of the QPs.
: For query steps that return a value, each QP will return
a single value which the BCP will add or compare to the
existing values returned by other QPs working on the query
step.

For query steps that produce output relations, each QP
assigned to it will generate a unique file. When a QP fills
an output buffer in the MBU, it sends a page request to the
BCP. The BCP adds the data sequentially to the output file,
and provides the QP a new output buffer.

A logical file list is used to logically concatenate the
output files of each QP working on a query step. This file
list 1is sorted by ascending page number of the first input - 1
relation.

When a query step is completed, it is deleted from the

task tree, and any temporary input files are removed from the .
MSU. The logical output file then becomes an input relation]
for the parent node. If there is no parent node (i.e. this IR

is the root of the query tree), then the BCP directs the MSU

68 S

L At S Bl S o S A G D SON A aihs i et i te e e Sate i S ANk Egt it e R B B oI LY TN Ty TS YT
~ ST T REER S R N - -

to concatenate all the files in the logical file into a
single physical file. The BCP tells the FE the query has
been completed, and gives it the output file name. The FE

then passes the file to the host system.

Paging Algorithm

The ©paging algorithms are used to control the paging of
data in and out of the MBU so that the QPs can manipulate the
information in the database, The algorithms discussed are
simplified to highlight the input paging scheme of the algo-
rithms, This is because the buffer allocation scheme and the
output file control are discussed elsewhere in the thesis.
The MBU is not discussed because logically it is part of the
QP memory area.

In the algorithms, the variable m is the logical page
size stored in the QP status structure, and is set by the
buffer allocation scheme,

The BCP has three major paging algorithms:

* general paging algorithm -- this is the paging

algorithm used by most gquery step operations

* gsort paging algorithm -- this is used only by the

"sort" operation

* merge paging algorithm -- this is used by the "union"
and "insert" operations

General Paging Algorithm

Step 1) The BCP sets the "start”, "end", and "current page"
indexes for each input relation. The logical page size is set

according to the buffer allocation scheme.

Paging Algorithm
Start

Init start, end, and current page
index of each input relation

Load next m pages of relation (1)
and advance current page index (1)

-

Load and increment current page index (2)]

y

QP processes the data.
Add output to file

no

no
lcurrent (2)
= start (2)

’
]
Query Step Complete L
Exit !. |

Figure 10. General Paging Algorithm.

70

...................................
............................

B e e L o B
RS -:.-’ Lot "\:‘ F S R A L M A T St e e e et 8T

T T — Y MBS Julh e UAask saach Bnads Jaut e uiend Mgl Dean ety o0 T W T ————— ———— ———r—— T

Step 2) The BCP directs loading the QP with the next 1logical
page of the first input relation (incrementing the "current
page" index as it loads).

Step 3) The BCP then loads the next logical page of the

second input relation (if any), and increments the "current

page" index.
STEP QP). The QP then operates on the input pages and the
BCP stores any output. After the QP has completed its opera- -

tions on the pages within its memory, it requests additional

T
»

input pages.
Step 4) The BCP then compares the "current page" index to e
the "end page" index of the second relation. If they are

{ equal, it means that the m pages of the first relation in

‘[; memory have been operated on with every page within the e

” "start/end" page range of the second relation. If they are e
not equal, it goes to Step 3. g"

Step 5) The BCP compares the "current page" index to the iqw

"end page" index of the first relation. If they are equal,
the query step is complete. Otherwise, it resets the "cur-

rent page”" index of the second relation to the "start page"

index of the second relation and goes to Step 2, "f“
Sort Paging Algorithms :ﬁf -
]

The paging algorithm for the "sort" operation is unlike
any other paging algorithm used by the BCP, This is because

the "sort" operation requires all the data which is being

sorted to be in memory simultaneously, whereas the other

operations are able to work on one page (per input relation)

at a time,

Sort Paging Algorithm
Start

Epit start, end, and current page indexes]
e

o

Load m pages and advance current index
.

QP Sort
Store in Temp File

no

current
= end

yes

Merge all files
into one file

..‘ - ~.r,.~.-_" .

PR .

. P B
Lt T o

T Sty ate V.

Figure 11, Sort Operation Paging Algorithnm, }ﬁ-
Step 1) The BCP sets the "start", "end", and "current" page ;1
indexes. It sets logical page size to m. '
Step 2) It then loads the next logical (m pages) page into
the QP and increments the "current page" index accordingly. °
STEP QP) The QP does an "in place” sort on the data (i.e. a :E
72 o
.
e S R R S

Heapsort or QuickSort). These pages are then written into a
unique file.

Step 3) The BCP compares the "current page" index with the
"end page" index. If they are not equal, it goes to Step 2.
This operation continues until the relation consists of ﬁany
small files.

Step 4) The BCP then uses the "union" operation to merge all

the files into a single output relation.

Merge Paging Algorithms

The "union"™ and "insert" operations use one of two
different ©paging algorithms depending on whether the output

relation must be sorted (to eliminate duplicates) or not.

L 4 Sorted Merge (eliminate duplicates)

Step 1) The BCP sets the "start", "end", and "current page"

indexes of each relation. It sets the logical page size to
m.
Step 2) Determines if the two input files are sorted. If »ﬂ

an input file is not sorted, create a "sort" node operation

IR I
R St T
N Lt e

STEP QP) The QP uses a merge sort algorithm to combine the

to sort the file. 2
Step 3) The BCP then loads the QP with the next logical page %fbﬁj
of each relation and increments the "current page" indexes. fa
L.

'Y

TN

..~

two separate files. As the QP completes a page from a rela-

R
et
N
Lo e o L

tion, it requests another input page from that relation.

. ...

WL
ARSI

4 ,

S ,

A

- Step 4) The next logical page is loaded and the "current

73

. S
W S
el
Lt & s

r ¥ —w -~z g
v

T OIS SO R pv i e ol aRe i N i

Sl ol ot S i e S ln

erge ﬁaging Algorithm
Start

Init start, end, and current page indexesl

kreate sort nodel

Telation—(2
sorted

RO
[create sort nodel

¥

load and advance current
of each relation

QP Merge |

age
Request =

elation (1

lyes

load and advance
current index
of relation (1)

' yes

index
no
load and advance
current index
of relation (2)
urrent (2
< end (
yes

-

concatenate the remainder
of input file to the output file

yes

Figure 12,

Union/Insert Operations Paging Algorithm.

page"” index is incremented for that relation.

"end

Step 5) The "current page" index is compared with the
page" index. If they are not equal, go to QP STEP.
Step 6) The remains of the other relations are simply conca-

tenated to the output relation.

Unsorted Merge

If the "union" or "insert" operation does not require
the data to be sorted, then the two files are simply concat-

enated together.

Buffer Allocation Scheme

Because the initial configuration does not allow shared
pages in the MBU, a deterministic buffer allocation scheme is
used rather than a dynamic one. In the initial system, each
QP has eight (8) pages of buffer space. The reason eight
pages was chosen 1is because the maximum number of files any
one query step operation accesses at one time is four (two
input relations, one output relation, and an error file). To
reduce idle time waiting for data, double buffering is used
in the general case. This results in eight pages of buffer
space per QP.

Despite the fact that the initial backend system will
use a deterministic buffer allocation scheme, the paging
algorithm was designed for a dynamic scheme (in the hope of
future enhancements). Because of this, a buffer allocation

scheme is needed to assign logical page sizes for the paging

e .
L a NN

algorithm.

For unary query step operations (except "sort"), nothing
, is gained by making the logical page greater than the physi-

cal page. Therefore, all unary query step operations (except

. "sort") will have the logical page size set to one.
For the "sort"™ operation, there is no error file or i;
second relation, Furthermore, the sort algorithm can only }
i sort data currently in memory. Thus it is advantageous to i 1
bring in as much data as possible at one time, By using an ?4;éj
in-place sorting algorithm (i.e. Heapsort or Quicksort), the {1%}

entire eight pages can be used for input and output, Hence »
the 1logical page size for the "sort" operation is set to

eight. Note that this causes an idle time in the QP while

swapping in new data (i.e. no buffering), but reduces the
paging requirements by the number of pages within the rela-

tion being sorted.

For binary query steps (except "union" and "insert"),

the pages of the first relation are not swapped until the

entire second relation is read. Because of this, very little

is gained by double buffering the first relation. Instead, ‘
by doubling the 1logical page of the first relation, the
number of times the second relation must be read is halved.
Since double buffering is useful for the second and output --;~
relations, and there is no error file, four pages are avail-

able for the first input relation. Therefore, the logical

page sizes for the relations are four and one respectively.

‘o - .. -
ot W
e a' Aty

ol

....................

For the "union" and "insert" operation, the next input
page could be for either relation. Therefore, double buffer-
ing 1is advantageous, and nothing is gained by changing the

logical page size. Both will be set to one.

Node Splitting

When a QP is assigned to a query step, the BCP determines
if node splitting is required. If this is the first QP
assigned to this query node, then node splitting is not
performed. The starting page(s) is zero, and the ending
page(s) 1is the number of pages in the input relation(s).
Otherwise, if the BCP is assigning an additional QP ("new
QP") to the same query step, then the BCP must split the node
into different query step segments. Each segment of the
query step is then processed on separated QPs, and subject to
further splitting (segmentation).

During node splitting, the output files (if any) are
linked in ascending order by their starting page number. The
purpose for this is to attempt to maintain sorted relations
in a sorted order. This procedure works for query step
operations: "select", "delete", "modify", and "diff". It
will also work for the other binary operations if the entire
first relation is less than m pages.

Note that "insert" and "union" operations may not be

split across QPs.

77

- -

e ’.. . s . . [.
. « 8 _@ 0 3 0
LA L I I S PRy §

o
o
o
4

.....................

.

i

Node Splitting Algorithm ﬂf:jj

i e The node splitting algorithm consists of two major Q;ﬁd
’

steps. The first is to find which QP contains the 1largest o j

- segment of the query step being split. The second step is to S

i actually split the query step segment between the two QPs. Do
’

The algorithms discussed here are simplified versions of the

one used in the BCP software.

(Split Node) j}
e d
.-:J

Find largest segment of the R
Query Step ——eeid
(See Find Largest Algorithm) JR

l

Split segment between two QPs
(See Split Segment Algorithm)

< Exit)

Figure 13. Node Splitting Algorithm.

To find the largest query step segment (See Figure 14),

the BCP 1looks at each QP's query step pointer. If it 1is

equal to the query step pointer being split, then the BCP

...

<:Find Largeé})

v
large = 0
i=_1

""-'- CaONGININL)
B S o

T v T
. I

QP (i) working
on the
query step

no

ﬁincrement i]

yes

fr.fr.
. o

Rell = end (1) - current (1)

'i; Rel2 = end (2) - start (2)
Rel2 0.0
=0 l
Large = Max (Large, Rell) ?ilf
yes =

Earge = Max (Large, Rell # Rel%ﬂ

-y

ot
Pttt
e
PO A .

Figure 14, Find Largest Query Step Segment,

P
)

3 computes the number of pages left to process. For unary
_— operations, this is the "end page" index less the "current
t page" index. For binary operations, this is the "end page"
E index 1less the "current page" index of the first relation,
E times the "end page"” index minus the "start page" index of
the second relation. The QP ("large QP") with the largest

2 number of unprocessed pages will have its query step segment

split with the free QP ("idle QP").

To split the "large QP" with the "idle QP" (See Figure

15), the BCP first chooses which input relation to divide.
This will generally be the larger of the two relations (for : Y
the "diff" operation, it must be the first relation). Then
the index values for each QP status field is set according to

(‘ the algorithm shown in Figure 15. e

Idle QP
Large QP

Split Segmentj) I
(L

>
Rell = end (L)(1) - curr (L)(1)
Rel2 = end (L)(2) - start (L)(2)

Rell > yes
Rel2
no
curr (I)(1) = curr (L)(1) curr (I)(1) = curr (L)(1)
start (I)(1) = curr (I)(1) + Rell/2
end (I)(1) = end (L)(1) start (I)(1) = curr (I)(1)
end (I)(1) = end (L)(1)

start (I)(2) = start (L)(2)

+ Rel2/2 start (I)(2) = start (L)(2)
end (I)(2) = end (L)(2) end (ID(2) = end (LY(2)
end (L)Y(2) = start (I)(2) curr (I)(2) = start (I)(2)

-1

curr (L)(2)
tart (N)(2

no

es

curr (I)(2) = curr (L)(2)]
curr (L)(2) = end (L)(2) I~
(cause next load) e

[purr (I)(2) = start (I)(Zﬂ

(Exit) f%i

T

Figure 15. Split Node in Half Algorithm. 2;‘?

- - — -

81

1
. .'-'.'} R A B
PP SN PPN A A

. e e m e e e e e e wmial e g s et
ey g .® LI) L) . B T I S S U RN - DAJCRI AT TR T VO,
LE AP IR IR R AINCA RO SR I . s

g g

8t e et L Ya"u"s "0 . . L L S e % NN CACIAL g *,
O YA WA P S T P A W, IR R S S Sk RIS SRR ST AT SRR AR IRATAL A AL TN ALY AL SO

rv‘- L mOEE s s cien age PRl A anch pan R IRAPE Are Seriveciaed - AR \Wwﬁr_r A A A A et fa-o e i R g il B SRS S
- . N A U ST T T RSN S . PO - . .

Node Splitting Example

Let query step 'X' be a "select" operation on a relation _
with 1000 pages. Let page size (m) be constant equal to
one.

When the first QP is assigned to query step 'X', its starting
page is set to zero, and the ending page is set to the number e
of pages in the relation. S

status QP#1

4 start (1) = 03 current (1) = 0 end (1) = 1000;
' start (2) = 03 current (2) = 0; end (2) = O
page_size (1) = 1; page_size (2) = 1;
step = X', file = 'X.0'; -

Note: File pages are numbered 0 to 999, T

After QP#1 has completed 120 pages of the input relation,

QP#2 ("new QP") becomes free and the BCP decides to assign it -
to query step 'X'. Since this is an additional QP, the node e
must be split, Because QP#1 has already completed the
first 120 pages, its current status is:

status QP#1

, - start (1) = 03 current (1) = 120; end (1) =1
‘h' start (2) = 03 current (2) = O; end (2) = O =1
page_size (1) = 1; page_size (2) = 1;
step = 'X'; file = 'X.0'; oy
i The BCP finds the "large QP" by searching all QPs already R
-~ working on query step 'X' (in this case there is only one), B
and determines which has the largest number of pages to .

process., QP#1 has 880 (end (1) - start (1)) pages left. SRR
These pages are split between the "large QP" and the "new QP" nT
with the "new QP" getting the latter half. The result is: L.

status QP#1 R
start (1) = 03 current (1) = 120; end (1) = 560; N
start (2) = 03 current (2) = 0; end (2) = 0; SRR
page_size (1) = 1; page_size (2) = 1; e
step = 'X'; file = 'X.0'; T
status QP#2 cr]
start (1) = 560; current (1) = 560; end (1) = 1000; T
. start (2) = 0; current (2) = 0j end (2) = 0; D
N page_size (1) = 13 page_size (2) = 1; 3
step = 'X'; file = 'X.1'; 0

. N Now a third QP becomes free. During the time, QP#1 completed

!

82 \

;{
N
N '1
<

-——

..................

50 more pages, and QP#2 completed 80 pages. So

status QP#1 lst relation is:
start (1) = 03 current (1) = 170; end (1) = 560;

pages left = 560 - 170 = 390

status QP#2 l1lst relation is:
start = 560 current (1) = 640; end (1) = 1000;

pages left = 1000 - 640 = 360

So, QP#1 is "large QP" and QP#3 is "new QP". After splitting
the pages in half the status of the system is:

status QP#1 1lst relation and file:

start (1) = 0; current (1) = 170; end (1) = 360; 8
step = 'X'; file = 'X.0';]

status QP#3; 1lst relation and file: . ;
start (1) = 360; current (1) = 360; end (1) = 560; »
step = 'x’; file = 'X.Z';

status QP#2; first relation and file: :jfi
start (1) = 560; current (1) = 640; end (1) = 1000;
step = 'X'; file = 'X.1';

This process of node splitting continues as additional QPs 4
are assigned to query step 'X', and the output files are BRSNS
linked in ascending order based on starting page number. The e
resulting logical file is in the same sort order as the input DO
file. Lo

R

Locking Scheme i% \
To insure data integrity, the database must lock each ;1

base relation before accessing the data. The BCP uses both éb)

"read" and "write" locks on the base relations. Temporary T

relations do not require locking because only their own query Eif%;

tree will access them, A "write" lock prevents any other ’ , 3

query step from accessing the relation. A "read" lock pre-

vents any updates on the relation,

During the QP assignment,

the locks are checked on any

base relation the query step might access. The file 1locks
are checked only the first time a QP is assigned to the query
step. During "node splitting", the files are already locked
by the query step and do not require additional locking. If
the "write" lock is locked, or if the "read" lock is 1locked
and the query step is an update operation, then the query
step is ineligible for assignment

A retrieval operation increments the "read" lock when
first assigned to a QP, and decrements the "read" lock upon
completion, Likewise, an wupdate operation increments and
decrements the "write" lock.

This locking scheme is extremely simple, but inefficient.

A high priority update query step may be locked out by pre-
vious jobs and skipped over. This would allow lower priority
retrieval steps to place additional "read" lock on the file.
The result is a lockout condition of a higher priority job.

An improved locking scheme could take advantage of the
current update procedure. Update operations only read the
original file and write to a different output file. Upon
completion, it deletes the old file and renames the output
file to the old input file name, This means that an update
operation could 1lock a file that has the "read" 1lock set.
Upon completion of the update, if the "read" lock is still
set, rather than delete the file, the BCP would rename the
file and have all query steps reading the data close their

input files and reopen them with the new name. The 1last

T - R e e S e s A e SN R A S A S R S i g S Sk S G A S At o ol

query step to unlock the obsolete file would also delete it.
This provides a higher concurrence rate and eliminates the -

lockout problem.

Error Handling

The BCP error recovery capabilities are non-existent.

If the software is unable to allocate storage or if any other

4 unexpected results occur, the BCP prints the current module
name and an error message, and halts. This will be inade-
quate once the frontend is operational, and should be cor-

rected.

L aut aus o

e -‘v"“'_", om0
PR P

G
e e

VIII Conclusion and Recommendations

Overview

The major goal of this thesis was to provide a working
model of the BCP. Unfortunately, the project has fallen
short of this goal. The following areas were not completed:

* communications software was not implemented

(currently, the BCP interacts with dummy modules
that provide a trace of all I/0 to the BCP)

* only the general paging algorithm was implemented

* file locking mechanism was not implemented

¥ BCP commands were not implemented

Despite these failings, advances were made in the over-
all design of the Backend Relational Database Management
System. The thesis provided a functional requirements analy-
sis of the BCP along with the software algorithms necessary
to achieve these requirements, It refined some of the query
step operations discussed by Rogers. It included the addi-
tion of the frontend processor to the backend system to
improve system flexibility and modularity. Chapter 3 proves
the feasibility cf splitting queries across several proces-

sors. The thesis effort also produced a starting base for

farther advances to the BCP.

Suggested Advancements

There 1is still a tremendous amount of work left to be
completed on the backend database system., Initial work that
can be done on the current version of the BCP include:

* completion of the paging algorithm for remaining query
step operations (sort and merge paging algorithms)

AD-A151 892 BACKEND CONTROL PROCESSOR FOR A MULTI-PROCESSOR
ELRTIONRL DATABASE COHPUTER SVSTEH(U) RlR FORCE INST
F TECH WRIGHT-PATTERSO
UNCLRSSIFIED D H PONTIFF DEC 84 RFIT/GCS/ENG/B‘D 22 F/G 972

T RTE AT G A T e Tl

e e B T LU LA N R ST) AL Nl

N
n

FPEFEEER

er
[4
Er
FEER
_
—_— N o
© WO ﬁw

i =)

i s pie

” O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

(ECaNE M A O £ AL A

* implementation of a locking strategy for database files
* design and implementation of the BCP commands (this N
would require additional data structures to manage S
partially completed query steps (i.e. query which have -
been preempted)) s
* implemention of BCP communication abilities {should

be interupt driven) ;i{
Future enhancements to the BCP, once a common or shared e

memory device (MBU) is available, to improve system perform-
ance may include:

* design and implementation of an optimized QP assign- -
ment algorithm which supports pipelining

* design and implemention of a buffer allocation
algorithm

* modification of QP and BCP so that a QP can be
operating on two (or more) query steps concurrently

(this would reduce QP idle time and facilitate -
pipelining) BON
* determination of optimum file structure (system o
currently assumes the use of simple flat files) qu
Short term advancements within the Backend Database ﬁ?f

System include:

* implementing Roth's DBMS on the FE, and providing the
tree translation software needed to convert the Roth
query tree to the BCP query tree

* design and implementation of the QPs and MSU

Long term goals of this thesis project remain wunchanged

from Fonden's original designs.

Parting Comments

This section will discuss some general comments about
the developement of the BCP from the author's perpective,
The use of SADT to determine system requirements was a tre-
mendous help in the initial phase of the thesis. Several
months of effort were spent discussing with Dr. Hartrum

specifically what the BCP must provide, and what type of

87

support it could expect from the other components within the
backend system. Once the major functions of the BCP were
determined, the SADT became a liability because of the amount
of time needed to modify them for minor changes within the
system, After modifing the SADT diagrams several times, they
were not updated for each change and the current diagrams
provided in Appendix C are a mix of the designed BCP system,
and the initial SADT requirement diagrams.

Once the requirements were fixed, the majority of the
coding was completed in six weeks. Part of the reason the
coding was completed so quickly was due to the SADT diagrams.
Having fixed requirements, it was easy to implement and test
the individual functions. Modular code was used to make it
easy to modify one functional area without affecting the next
one,

The language used to develop the BCP was BDS C. While C
tends to be a cryptic language, it is very well suited for
systems work., The BDS C is an impressive compiler. It is
able to quickly determine if syntax errors exist in the code

so the programmer is able to spend more time working, and

less time waiting for compile runs (and error reports).

4
.'"1

B

o

.
N S R

.

BT et e
HUPEIRRIRLNL P
Vb et ettt
etetet, f
ORI AT
a2 A S

' .
e
PURPEF S S

L |

...

Appendix A:
Glossary

E AFIT -- Air Force Institute of Technology

: Attribute Field Identifier -- A field length and start
location for fixed length relations. A zero value and a
position location for varying length relations.

Attribute List -~ A list of attribute field identifiers.

i base relation -- a permanent relation created by the DBA and IR
has all domains and attributes stored in the data dictionary. ' R

L BCP ~- Backend Control Processor.

; BDS C -~ A C compiler designed to run on micro systems.

Binary Relational Operations -- A relational operations .g -3
that act against two input files (i.e. product, join, union, SRR
etc.)., R

CP/M -- An operating system designed to run on micro

ti systems. ;;;‘4
" P
DB -~ Database. ST
DBA -- Database Administrator.
DBMS -~ Database Management System. ;“ffj
DD -- Data Dictionary,
DDL -- Data Definition Language.,
FE -- Frontend. >

IMM -- Internal Memory Module,

Independent Parallelism -- The simultaneously processing of
two (or more) parts of a query which will be joined at a N
later stage of the query tree. ()

LHS -- Left Hand Side of an equation,

MBU -~ Memory Buffer Unit,

Modification List -- A list of attribute field identifiers
followed by a new value to be stored in the fields.

..

MSU -- Mass Store Unit.

Node Splitting Parallelism -- Having several processors
simultaneously act on different pages in the same query step.

Pipelining Parallelism -- Having the output of a process(es)
being immediately fed into a second processor(s) to complete
the next step of a query,

QP -~ Query Processor.

QS -- Query Step.

Query -- A user request to access data within the database
(either update or retrieval).

Query Step -- A single relational operation to be performed
on relation.

Query Tree -- The combination of many Query Step needed to
perform the requested query of a user,

Retrieval Request =-- A query which only reads data from the
database.

‘:; RHS -~ Right Hand Side of an equation.
SADT -- Structure Analysis and Design Technique.
Selection Criterion -- A set of boolean (ANDs and ORs)
conditions to allow the comparison of an attribute field
value against a constant or different attribute field value,

Task Tree -- an ordered colection of Query Trees.

temporary relation -- An intermediate relation created to
answer a user retrieval query.

Unary Relation Operation -- A relational operations that
act against only one input file (i.e. project, select, count,
etc.).

Update Request ~-- A query which reads and writes data in e
the database,]

T T CEAPE A e g T d v IR I A A A R A A A A i A It S P e Pt J-Sau S JDeigran e SR D I S A A I B S 4
;oL e e . - W S L T St S e P

Appendix B:
‘ s Single Processor DBMS (SADT)

The high-level SADT diagrams of a single processor DBMS
- are included to provide a rough functional breakdown of a
ﬁ DBMS. This helped solve the problem of how to split the DBMS
responsibilities between the FE and the BCP, The breakdown

determined the major functions and logical break points.

Since the QPs were designed for executing queries, and
the BCP's major purpose was to control the QPs, the decision
was that the FE would essentially become a single processor
DBMS except for the actual execution of the queries. The
optimized queries would be passed down to the BCP, and from

here, down to the QPs.

91

S W W T W WL v . ey v v T .

T T T TR T T T T TN YT

(fj A-0 Single Processor DBMS

Abstract:

The system is a simple relational DBMS, it receives user
data, and commands. It acts on the input as a
relational DBMS, and returns either a reply or an output

queries,

relation.

¢ * - ' ‘e ‘ ‘ - .. . s -‘ ‘.) - ‘--‘-..‘..
; f '-' "' ’\.’A. L '. ’é E a A_‘- “- .\'A-' '[.:.'_\' > -] ‘_\i il-.h’. l.-.l. ad »' A A A AT AT WSROI, W W T4

T T N T A A A T N T N N N T T s TR . FalA%e Jite 8 te Sw g S bP S Bk Thdy Ay St S Snre dandiy S di

This i3 the environment node.

92

" J' ‘.'J‘ '.'.. * .'.. - e '-".-‘.‘ ‘ '.'-..'..;' '-‘.‘-‘-'.‘.\'.'- '.'. S

PRl v ..

> B,

| ¥ ITUNN — $ugq Jdoccedody 818utg 131411 _ 2°ev/01-dd8dWa 300N

.
Pl G T e

v
B

e e
L
L)

San b0

-
.

AR

23

\ vioddng P S ———
£ < TTOwy sKag pwy J0 e
1 J0 INdIng toucjoten *piog ‘Liend
opiaoid

SnCo
on)iong

_ I —
. LR Q100308 Lo
! 1 2vnd 13y . OZUMO" BESERREN

B J19%%¢g ‘W "\ vq I NONITVY . RS
'/ 1ARIINOGD nuva ¥3qvI oNINNUN »8/v8/31313)¢0 °

A0 Provide Relational DBMS

Abstract: This is the highest level within a DBMS, it
receives input (either a query, data file, or command), acts
against the input, and returns a reply or an output relation,

Al Get Input is the ears for the DBMS. It listens for
incoming user requests, and stores them in a form the rest
of the DBMS can understand.

A2 Process DBMS Input is the body of the DBMS. It performs
all the actual work done by the DBMS. It checks the syntax
of user requests, verifies the user's access rights, logs the
transaction, and executes the request.

A3 Send Answer is the mouth of the DBMS. It takes the
results from the DBMS and converts them into a form that the
user's process can understand.

LA ey el SOl T N MLl g

P .
FCC

- -

e
ALY

R ————

-7

1

| S —J .nﬁ.n_.jz_ SUTT _1vL0TTI 0y APINOIY .u.:.uL 2°1Y/01 /438410
L3
10 AlllllNII
1oy
20 ynding Jearuy
puss
.
-
$nduy
yndIng snao
ssed04d
[}
jndug
ynduy
109
. 12
Pwg 40
‘oyog 'Lienp
ROTI9IT1ard IV 6 U L § 8 ¥ E € ¥ I53I0R
Q3GN3LA00N
14v% N3y Quax M- 1393r0Nd
12XIINDD uve [piep ki] ONT X:0N *8/92/1%1314Q JIANOd Y @12 BRI HONLNY '

FARAR

PP

-

. -
At e tind

-
o

PP SR PR

iw .
*e

e ®
P
S NI

..

A2 Process DBMS Input

Abstract: This is the body of the DBMS, It performs all the

; actual work done by the DBMS. It checks the syntax of user
requests, verifies the user's access rights, logs the
transaction, and executes the request.

' A21 Analyze Syntax checks syntax for all queries, data input

files, and commands, It verifies if the relations and/or
fields exist within the database (this includes checking the
data types).

A22 Verify Access provides data security checks. It verifies
that the user has access rights to the relations, fields, or
commands he is attempting to access.

' A23 Log Transaction provides a transaction log of all queries
and commands run against the database., The log is used for

> both backup and security purposes.
A24 Optimize Query arranges a complex query into a relatively
efficient query form (tree).

A25 Execute Query actually accesses the relations and fields
to provide the results requested by the user query.

A26 Execute Cmd actually accesses the database tables and/or
data dictionary to modify the database system.

..'.'-’:"" Lo 'A'.' v,
N A B ¢
PPy AU IR P LI S GPST W)

L
A

1
-
ﬁ-.

TS T,

| S
.mmucaz— andup cpyqq vswdoay .m:.:F 2°2v/01/dd8dug t JAON_ |
<
e
nding Laerp
e3noery)
[
Li0nd P11 1]
pazimy1d0 ®ziw)ydp
°
’ Ly
10 -2 Kiory
1nding Lad ptioa Vo |3D08V0J)
einzer3 801
4 z
\
PU3 PlIDA yndu) ssedoy
plioa Kyr20p
1
ndu| 31%5e40)
£] 109 13901uLS uwu...u.m:
et [$]
MWMFGUHWmmW X B0 8 ¥ ¢ 9 8 ¥ €t € T IiS30N
NZLKI22
FERND | 1A3Y E_uxomn t193008d
14X34N0D 3 Y3qvY ONIXZON *E/7PE/TT L3NG J1Tined i@ S1vg VARPIYOHLNY

27

-
-

s\hA
L]

R
P I D)

.

N

e * -
S T SR

L

T —— ol S A R AR Y A S I Tt St g

L,
l'l

.

Appendix C:

Requirements Analysis of the Backend DBMS

A-0 Multi-Processor Backend Relational DBMS

o AO Provide Relational DBMS Support R
- Al Initialize Database System o
- A2 Provide DBMS Functions R
i A21 Provide Frontend DBMS Functions)
} A212 Execute FE DBMS Functions R
i A2122 Execute Preliminary DBMS Functions
A22 Provide BCP Functions
A222 Execute BCP DBMS Functions
) A2223 Add to Tak Tree -
: A2224 Manage QP Assignment/Release '
A2225 Manage Active Query Steps
1 A2226 Update Task Tree
: A3 Shutdown System

7

.

.
I

th

,r,-'l,‘,'-ll".
L ML .

- R PR
PRI

98 o

rct--.h‘x-.‘-Q m—pme—— T T ot o I P P P P e Pt A e —

A-0 Multi-Processor Backend Relational DBMS
Abstract: This is the environment node.

At this level, the Backend DBMS is seen as a Relational
Database Management System. Once the Backend is activited
(DBMS startup), it receives queries (both retrievals and
updates), new data, and commands from a network, host system,
or a CRT terminal. It responses with either an output
relation (for retrievals) or a reply message for updates and
commands (assuming nothing went wrong).

Packets are used to facilitate communications between
processors.

L I P
[P R A S

i - .
. e e v
[N ARSI R L S

R] ¥
M B
- __ [3
4
1-’
3
S 480 19U0TIMI @Y PuSY8g 40¥Te304g-TAINM 131414 | $°0/01. di%ar 1ol
smca
aNINOwE
0
3
A o
1Y0dANS
- —— e} snrngo Y - e—————
AVNOI L VI
Nd A i¥d QN ¥O
o i3y 3614044 vivo ‘a¥3nD
. l.
I
‘e %
‘-
v
r.“..
SREA JOLHVIS
..-..-
vy
.\-
- RETTUTTA BT & B T F 5V U T VT ISIION —-
\IWiod3y X o
N e 1n2y ONINOYE 1193r08d o
£AX2LNCD SNTRY0A 8°02/5%12.93 J319u0d U 197 34831 30HINY -
A
X
K

b Arm IR A e v g o Sran 4 —TTT
CIA3 PP A Bl S A AR P Y

...
SN

A0 Provide Relational DBMS Support

Abstract: This shows a simple breakdown of the DBMS. It .
contains startup, active, and shutdown phases. -

A portion of the startup phase will be initiated by a
human operator. Once the system is up, it will provide
database management for the existing database. The DBMS
functions include relational operations (select, project, e
join, product, union, difference, intersect), update Co
operations (insert, delete, modify), and miscellaneous
- operations (min, max, count, sort, sum), The DBMS commands
provide some external control over the Backend system, and
allow the DBA to modify the database data dictionary. The
- commands include: startup, shutdown, start job, stop job,
abort job, change priority, job status, and DDL commands. The y
F shutdown causes the system to stop accepting input, but
f should allow current queries to complete successfully.

- Al Initialize Database System entails all necessary steps
\ needed to bring the DBMS up as a functioning unit (i.e.
supply power, load 0S, initialize system tables, etc.).)
A2 Provide DBMS Functions contains the necessary DBMS ;ﬁfﬁ
; functions needed to allow queries and commands to be levied B
¢ against the existing DB. SR
A3 Shutdown System provides a safe, orderly method of L--:

terminating the operations of the DBMS.

101

TYTY I NIV IY

e diee i a Ay

R

L e aves 4

T CIitien BF1nody .5:,-.—

1

QYOI glddi

IV PWY JO t

°ioQ *Lsenp

weisfg
[21-1-1.37.51
eriiotytul

)

L

sneQ drisols

T & B L ¢ 85 F t ¢ Vv ISIN

Koy T
LS LE- 1R LV i _
i by
Puw) URCDINUS
warafs,
[V EXAINE Y 43¥ 1
®i1pI ae)8 fg
suoDUNy ju
‘o =~ / shog
19g £icoy opLaoig
Jo ynding
fpouy weysisg
ROYIEITANS
GIAINZULGSIY X
Lowvg tNIY
11X3LINOY 3va ¥3IZV2y ONINimdN $87L2/71713200

‘N ®1°g 3

nzuyuMn $123roNd
I 1YOMLNY

102

3 . Al Initialize Database System

E Abstract: Entails all necessary steps needed to bring the .
i DBMS up as a functioning unit (i.e. supply power, load 0S, Y
N initialize system tables, etc.).

N

N A large portion of the system startup may entail human
X intervention to power up the system and manually load the
; Operating Systems.

All Startup Frontend causes the frontend to be booted with
the FE Operating Systenm.

Al12 Init Frontend causes the FE to initialize system tables
and verify that the BCP is available for use.

- 4

A13 Startup BCP causes the BCP to be booted with the BCP]
Operating Systenm, -
A

Al4 Init BCP causes the BCP to initialize system tables and "
verify that at least one QP is available for use. Sends a Sy
message to the FE after initialization is complete. N
Al5 Startup QP causes the QPs to be booted. '
Al16 Init QP causes the QP to initialize any internal fields ff;?
or tables, Sends a message to the BCP upon completion. - R

AUCR AN

Ve

¥y

_ :_ . ———————— e i 4 e ———— e . — -7

o . . . BLITRIANUTL 134014 1719 9./ 5a AR

—_—— U * — A

tn "
-} ——— e e —— —— e —
£poey worsidg
3 L4 4
STy A
D [] B L4 daon pUSIUGI 4
o TRy A <
T e) smmas /3ru) 'S
£) 3 a3/ 79 i
< £t [}
___ o
o2 V1V 430 11 34 VIV
<0 toR pusUO. 4
anjios anisoNg [2t ¥1-2%
dniingg } agnjanyg .m— odnysogg
d9 ¢9 ﬂrou:o.uﬁ
—_— L - 12
SnEg dmJelg

i
e ey gy iy = - . a
.;.,:J-.ﬂwm.,.._ T8 3 L 9§ ¥ ETE YR , “
C30434d40058 ¥]

BTPIN >y ON3X0Y8 1430 CYd
SANIUINDD 3¢ ¥ITH AN oRINNCT, r5-L27118 H] JITUOd N G1%Q JURZZCHLNY

..

A2 Provide DBMS Functions

Abstract: Contains the necessary DBMS functions needed to

allow queries and commands to be levied against the existing
DB.

The system is decomposed along "functional” lines of the
major architecture components of the system. The frontend
receives queries and commands from the outside, places the
valid data into an optimized query tree and passes it on to
the BCP., The BCP then decides which task in the tree to
perform in which order, and assigns one or more QPs to work on
a task. The mass storage unit (MSU) allows fast access to
the DB pages and can transfer data into and out of the
memory buffer unit (MBU) quickly. The memory buffers provide
a (hopefully common) memory space in which the QPs can
manipulate the data stored in the system. The QPs actually
execute all the necessary relational functions against the
data stored in the memory buffers,

A21 Provides Frontend DBMS Functions is responsible for
communications between the backend system and the outside
world, It is also responsible for most of the database
management functions not directly related to the relational
operations against the database (such as syntax checks,
security checks, transaction log, and query optimization).

‘:m A22 Provide BCP Functions is responsible for scheduling
query tasks and managing the system paging.

A23 Provide Mass Storage Functions is responsible for file
management. It provides permanent storage of the existing
database, plus temporary storage of any intermediate
relations created during a query.

A24 Provide Memory Buffer Functions provides very fast
scratch pad memory for the QPs to manipulate data.

A25 Provide QP DBMS Functions provides the relational
operations (select, project, join, product, union,
difference, intersection), update operations (insert, delete,
modify) and micellaneous operations (min, max, count, sort,
sum) that actual act on the data within the DBMS.

’
'. f r— e = e ——————— o g et e — e ——— = - -
b. B e e L. svetitung gt OTinouy .uflu.L o Yrwser,. MAuC ~
Yo
»" InIWNIAI Y
Kienp Itun
B ®.035 Peon
r *
s ved Y AN
v [3-1-] zu_ f e e 200y 7
) DX S -} g
ﬁ,. . wWILIDUN 4 'y 'y SO YU g ° A suo}isuny
B - SR ieggrp L V1-21 4 w‘a.'llJ
3 <D [FEROTY (111, °
. oniA0I4 wUIADIG 1 LETIRL-P]
. - & =i e e g e e
1 L) 9 Atd nding / avg
40 /310 ©I0Q
1vd Pwd
3 e = . — 60,015 | 210 ©IeQ/ 40 ©03DQ
*3NIDPY ey rin 7 JosrenoIy
tQ23un) pusrovg N
12
4
N
~ .-.,.'. suoyIduny
. [V 31V, VOF)
' Rl /Jivg ojuy Gurtiog OO.MWWL
Isovey wluy/ J0 deyg Kiend)
L J
0]
- ; Cw.l
: *|p) woleig g 1nd P 424 J0C \ g
3 ' > etuCasOY fAseny peliw! v =1 suoridung)
s b1gtle] - F—————
. l.llflm.l PUeILOS 4 114 Dw)
B 10 ®p | rOIg 40 €207
: -3 ‘hs0mp
. Iy £1Bay 10 1rang »
[SR ¥
fooey weysis
s ‘
, TRINENEN T [T 5§ — % € ¢ °§ IS3ICH -
, " 7
. inTa QHIXIYR1LIIMONL
& PLYEINDD 3ivd N 13- 27573 & TEIRC 1113ued W ®1eg VeI 1¥OHLINY
\.

. . .

...

A21 Provide Frontend Functions

Abstract: The frontend (FE) is responsible for
communications between the backend system and the outside
world. It is also responsible for most of the database
management functions not directly related to relational
operations against the database (such as syntax checks,
security checks, transaction log, and query optimization).

The FE brings request from the outside world into the
backend. It performs the preliminary data checks on the
information before passing the data to the mass store unit or
the Query/Command on to the BCP. After the BCP has answered
the query, it sends a response back to the FE telling it that
it has completed the query and where the resulting relation
is stored on file. The FE then request the MSU to send it
the output which it forwards to the outside world.

A211 Receive FE Msgs listens for incoming messages from the
host system or from other components of the Backend System.
The messages are converted into a useable form for the FE.

A212 Execute FE DBMS Functions acts on incoming messages from
the other processois. Its major functions are; to receive and o
validate queries/commands from the host, manage the Data AR
Dictionary, pass the queries down to the BCP, and send L
replies back to the host.]

A213 Send FE Msgs converts the internal system structures
into a form that can be transferred to the other processors.

e e

~
A
-
]

i

107

L S A

oo
.1
¥
*d
.“‘
!
|

A
<3
TN
i.‘
.

-

. - ThEna Fr104nvdd BYADAL 2T 1712 @1-d0g4ug
i
+*0 o SN !
i
1N Lyt ” -
©o .\Tnll!.illl«lz...«i-_
Idd LD DUy, _rr
20 ——— 23
144 DWD g9 o pussg
Lavnny r..:..!;nO\ L e,
A
10 g e —
1vy fruey
20 yriirg
z
suo1IDUN4
~ sm80
34
sbep 34 eincer)
Sui1eByng
.° ."!-c ,
\.
3
e O
B 3y 34
Burwodv| O anend esr|od ey 1 1mdymg
_ . 2 Jo
. ‘210 ovag
*0
z0
14 @tvodeoy
1
Ang PwWY so ‘oroQg *Lipnp
LOTTEITT4TT:S T L 5O VU T TRIIN
Q33IN3iw023N
LNt 1N3N azuxumn.pounowm
1AXILNDD 3ive HICH3Y ONEnyon ¥osi2/7tY 300 J1tuog *y @183 dediyoqiny

o 0

108

A212 Execute FE DBMS Functions

Abstract: Acts on incoming messages from the other

i processors., Its major functions are; to receive and validate
queries/commands from the host, manage the Data Dictionary,
pass the queries down to the BCP, and send replies back to
the host.

The FE looks at the top message in the incoming queue
| and determines what action it should take. If the message is
from the host system, the FE validates the query/command. If
it was a DDL command, it modifies the Data Dictionary as
needed. If the input message was a response to a previous
query/command, then the FE builds a user reply. All messages
which must be sent to the other processors are then queued
1 and sent at the FE's earliest opportunity.

A212]1 Determine FE Action reads the top message in the queue
and calls the correct module for that message type.

- A2122 Execute Preliminary DBMS Functions receives raw input

) from the host system. It checks the syntax and user access
rights, and logs the transactions. If it is a retrieval
query, it optimizes the query tree.

3 _ A2123 Manage DB Data Dic is responsible for maintaining the
. |; database data dictionary. If the input message was a valid
‘ DDL command, it modifies the Data Dictionary as needed.

A2124 Build Reply receive responses from the BCP and Output
relations from the MSU and formats the data to be forwarded
to the host system.

s oo

A2125 Queue FE Msgs places any outgoing communication

messages in a queue,
J

1
] o
. 4
¢ “]
- “]
. e
»
109

4
vl

| 17217 01 408dud

- : ER At NP ST AP a.
10wy PO J.m.. el
DCJOJu:J K
10 ®nenn ars ity ¥
e
N
px) cbos01g 40 ‘Ajday *Indyirg nhﬂﬂnn
1y
1)
210
- ©10Q - P inding
ved of0i03S 12 [1s] 10
*Lycvy 190 *3tQ cIoQ eSouon esuodsey
pw) 1072 b4
1oBey
SO YDUNY
snyQ P 3—ry
[FLIVEX"INY VPl
. eynIexy
pw) efinsoyg pud
‘Pe) 437 joteq
“ojug Inbey
thienp poriwiId)
]
\
. uo 3oy
219 ©010Q 34
LIV 2T 37 0]
pw) 20 DioOQg
*hiord 8Oy
*Ssm 34 ¢
Gulwodu; O e erpH
ROTICITIE TT- € 8 L 9 S % £ ¢ TV is3ITN
Q33n3LL003Y X
1983 N3y azwxuma.roua.ouu
1AXIAINDD 31vg ¥2Iv2y BylaweT »Bre273T 200 J1TRNed W @1 90Q A1 N0NLNY

110

’ A2122 Execute Preliminary DBMS Functions

: Abstract: Receives raw input from the host system. It

I checks the syntax and user access rights, and logs the
transactions. If it is a retrieval query, it optimizes the
query tree,

. The frontend performs any data checks and manipulations
l that are not relational in nature. This includes the

I following four major functions, but other minor functions may
be added when their need is discovered.

3 A21221 Analyze Syntax checks syntax for all commands and
queries, It also verifies if the relations and/or fields
requested exist in the database.

A21222 Verify Access provides data security checks. It
verifies if the user has access rights to the relations,
fields, or commands he is attempting to access.

A21223 Log Transaction provides a transaction log of all
queries and commands (both for backup and security purposes).

A21224 Optimize Query arranges a complex query into a
relatively efficient query form (tree).

111

...................................
.....................................
....................................

',, Nv. - s . N , . . . 0
. | e ‘ |- R . P R - -t Y € - -l
2
‘-
s, [
2 " o o , B arovn wng cpeq Pasa vt uag @3nnes3 .uJ:_,:—
-» M
"
w.. 4,
a M.A - - |
.
. — -3
P, £yur0
3 e pwr ity 4
-.4 2 4
r_, sv,_
X
2 €
b
[
b Krenp
. periw: 190 PLYRY1-J IV V]
. So1
-.
p
.]
'y pw -
2 iohey c
.. 1oCe z
3 . S.
to “ p#) 9504015 PUD pPul) @29 ‘03100 1000 -3} > tr
> - . (s e 4
q spe3 edoionsg 13020V 2910 Q1i10Q
: 1pw) do8 . fyraep
S oy jeiny
. ‘Lieng Do2iwi V0
=
g O -y
re) 100
| psy JO O30Q T
f KronD 1204,0) o84 10Uy
ey J0 BvioQ LK
.hs.JO .y
RCTIVITTE Ny IV "8 B8 ¢ 9 § ¢ t ¢ ¥V i53ICF
’ Q3AN300Zy X
Liesft mny ONIYOI»E 193 0Nd
$AXIUINOD 3iva ¥3IAW3Y ONINUN »8/L278T13.20d JIvyuod *u ®19g eI H0NLNY
KPS W aaiil O N

112

A22 Provide BCP Functions

Abstract: The BCP is responsible for scheduling query tasks

and managing the system paging.

The BCP receives queries and commands from the FE,

and page requests from the QPs.

and handled one at a time by the BCP. Commands are executed
in the BCP, while queries are placed in the task tree to be

scheduled as QPs become free.

cause the BCP to have the MSU page data into and out of the

MBU.

A221 Receive BCP Msgs listens

frontend or the query processors.

A222 Execute BCP DBMS Function

schedules query step to QPs, an
of each operation.

A223 Send BCP Msgs converts th
structures into a form that can
processors, It sends responses
to the MSU, and query steps and
QPs.

These messages are queued

Page requests from the QPs

for incoming messages from the

s executes BCP commands,
d manages the paging algorithm

e BCP's internal data -
be transferred to the other ° 1
to the FE, storage commands
paging information to the

a el A A

et dde

1
> |
i
>’ .

113

$UVRITVG 0 BRpAedg 3 Q1LTL Ty

suoIouUng
sSnes

d28
[LT3 5]

1
\, (11}
sOGepm gog <29
BuINODU] O erend ®arecby

S

11d ysenday eloy

(%}

11y OW) g8 4D
£,0~D) POII1wLICQ

|- - V- | I,
4
y L _ .
b -
"
e ——— -
A ojur Bt
20 Co1g £sen
. ﬁ. .- .II)...-’.'!’_
[
4
TOwmy — —— e [L11]
1td Dy edDs0Y dnd
- - e pueg
b
Dy
194 @rUDUreY
1
sGrm 128
. Buita%1rp
- 10 onurp
19wy
oDl wervisg
3
TNCTIVIT I
k G3ANIA003Y X
. . 42091
$1XIINOD 3.vq ¥3ITY3IY ONI>soit

oY & 8 L 9 8 ¥ b2 Y IisIIN

IN3% nzmxuMm.houﬂoa&
D rucHLNY

*8,L271T13. 90 Jytyuogd ‘W @197 3

114

A222 Execute BCP DBMS Functions

Abstract: Executes BCP commands, schedules query steps to
the QPs, and manages the paging algorithm of each operation.

This looks at the message at the top of the input queue
and determines what type of action should be taken. Commands
are executed by the BCP and affect only a specific job.
Certain commands (stop/abort job) may cause a preemption to
be signaled against a ruanning query.

Incoming queries are added to the existing Task Tree
according to job priority. Whenever there is a free QP, the
BCP examines the Task Tree, File Status, and System Resources
Status to determine which Query Step should be run next., It
passes the Query Step down to the active query step module.

Page request messages from the QPs are handled by the
paging system, which supplies the next page needed to
complete the task. Upon the completion of a Query Step,
certain cleanup operations may be necessary. These include,
checking for the completion of a query, removal of the Query
Step node, and any old intermediate relations.

A2221 Determine BCP Action reads the message at the top of the
queue and takes the appropriate action.

A2222 Execute Cmd allows some external job control commands
to affect the system job scheduler.

A2223 Add to Task Tree phases the new query into the task
tree according to its priority.

A2224 Manage QP Assignment/Release selects the next Query
Step to be executed, and determines which Query Steps must be

preempted when a job is stopped.

A2225 Manage Active Query Steps directs the QPs and controls
the system paging of the MBU and MSU.

A2226 Update Task Tree checks for query completion, removes
old information, and deletes the query from the task tree.

A2227 Queue BCP Msgs places any outgoing communication
messages in a queue,

.........

S
L

. wl RET O - iy e i T e [.-
;
s .

b

. e e e e Suetadung snEQ d)§ EIN20X3 IIUIL 1°222¢. 01 1e33.442 BEMAY
. Sl A
w; to .
b, T Tar we i T ._ V
3 | i

SIS .. (e = —

r, .,.... L] ®91)] 18Dy J
b [T _
i 4 |
T. wvodeey DAY taia
2 ouo_asMgu to T -
r., < . 1senbey ebog)
y 4 —— £.00p
3 [YYR -1 €N3oig

- 1 — efouon / #%iomo
\ A F) 2| Y
N e201ny4 I ¥ Sy »

g —_— Vamy
., s .

) INI0IS BIINOteN .
”._ N e ? e10010y _u (]

. S [iveuwubissy tNIDYG @)ty ~/
¢ ~—— 0 <

K ¢ [esbouon
o l‘d'vuumwl
r. podaorg 4o OA P o.;.—.
{ /50 1dwessy 9 aeo) 00“-

¢ 20 e] ¥0y
w... - / -o.-wum an ey 93 ppY
3 snerg /9035 fienp
3 ﬂ YT

o + Lr0ng
L
[oo..z)a.ua ﬂll oju; Bujbag)

: ButeNing L __/ 20 Yuaig

3 10 eang \ﬂ\dﬁuw Kienp Peuns 43 T

~t- [1dwoesy

r _

" \ —r
S g Y pe>
), d28

] ®3Nnder’)
b oradrey 1
- k 1

‘ Lamwrnny |

) oor 1wt Idg vo!ioy

¢ o428 H

, — s suimIe

¢ PYI 428 tesmes _

: .,
5 O IT P LT)
N . N Bujmodul jo enenp
REresTaTa ¥ 8§ &§ 2 ¥ 5§ ¥ b € T iSIION

* Q30N3WW0I3IN X 3 . . . >3

A) 14923 13y NINJYR 1030

- $AX3INOD kTR ¥3qvy AINTNNCN *87e2/1313..93 Jitueg ‘W @ieg AMno.cwz.r:“

0
—
-—

A2223 Add to Task Tree

Abstract: Phases the new query into the task tree according .
to its priority. ' .

A2223]1 Determine Priority generates a priority rating for a :}fﬁ
& query. R

the task tree as another branch, The query tree will be L

i A22232 Join to Task Tree adds the incoming query tree into
E joined at the root node based on its priority.

117

[} ' Y
| e e s e — e [—
. S o OPp ¥F®L 03 oa o | JUETEwesr cofiuet 0T
T.A
b
: -] 10
o9, 39D,
LR Y
ee;) ytoy a0y A
©1 uviae frisntig N

| h
3
!
2
3 ©
& pa
v‘..
.
X
- t
r.
r. . £ivi0104d
- suimsmIeg
s
3
-
j %) n
W.A . eo.) Lierng N
I .A
= l
& 2

; y
v.,. NOTIYIT .64 BT 8 B L 9 § ¥ €t ¢ Y i53I00 ...
b C3IANILL0IIN X .
. 391 1NZY AN3INIS1133r0Nd N

| $AXIAINGD kIR ¥ICv Iy SNIINO $8/L2/7T%234:A $113¥0d N ®19G CRIIJOHLNY 3
¢_ .-

A2224 Manage QP Assignment/Release

Abstract: Selects the next Query Step to be executed, and
determines which Query Steps must be preempted when a job is
stopped.

The system selects a leaf node of the highest priority
job. It then decides if a QP should be assigned to operate
on this node based on:
1) the number of QPs already acting against the node
2) the size of the file
3) the number of QPs available in the system
4) the number of leaf nodes in the task tree
If an additional QP is assigned to a node, then a compression
node must be created,

The other two modules are used to halt a running job.
If a job is preempted, any QSs being operated on must be
stopped. After stopping the QPs, the job is removed from the
task tree.

A22241 Select Highest Available Leaf chooses the leaf node
with the highest priority, If it is directed to reselect, it
ignores all previously selected leaves.

A22242 Determine QS Requirements decides if a QP should be
allocated to work on this query step based on system status
(see above).

A22243 Create Compression Node adds a compression node above
a node that was split between two or more QPs.

A22244 Determine Which QS to Preempt is used to stop/abort a
job. It causes any QPs working on the terminated job to stop
after the completion of the current input page.

A22245 Trim Tree removes the query job from the task tree.

N _-..;.‘,4.

- ‘ 3o Laraabreen on s%ovay .SZL ___17¥0cCw/01/d38dWd ¢
[R — i
o N N]
-} - i n . . o B —
e o] Y PR T ﬂn"
WO} ———
<
! i)
! usuoug
— Y e ——— wia]
r peddoyg s
. -
as P 112281, Mnsummn—— *n101g ®ssnotoy
£0-a snioyg Ade~g -uc..sn:)....eMu - MDD B2y
10 & surwieing |
ceyy dionp sPyoIg Asenp
o2
| 4 t
o . 1dwenig o) 001
i sde1s Lienp S5eieiey /1unoy joey O R4 -y
U2 iua » cois fsenp VeBLD M wo;
<d sUIwiIe 100 198185
1dwo0ig .
10
dD *ms 4
ylwoord
|
Mwwwwuﬂwmn x TV § 8 ¢ 9 8§ ¥ £t ¢ TV i53I0H
K3ww0I3y
FEUTTL INn3Y QZUXUM‘~EUN—;O¢&
1LX2INGD iva ¥3¢v3y ONIAZIM 874273113490 1JTued W ®I18C 4RI y0HLNY
!
w g
_ _ —— PR P, A R B . I W .. B « «_ BB

120

-—

- -

A2225 Manage Active Query Steps

Abstract: Directs the QPs and controls the system paging of
the MBU and MSU.

Upon receiving a Query Step, it is now considered
active, and the Query Step is sent to the QP and allocated
memory space in the MBU. The paging module is then told to
load the initial input pages. Once a query step is active,
the paging module will handle any addit.ional page requests
required by the QP. Upon paging out the last output page of
a Query Step, that step is completed. The QP is cleared and
marked free,

If a preempt QS is sent to the paging module, it stops
suppling input pages to the QP.

A22251 Allocate Buffer Space determines how much buffer
spaces is needed (and available) by the Query Step., It then
forwards the Query Step down to the QP, and causes the paging
system to load the initial pages of the relation,

A22252 Manage Paging handles the system paging algorithms.

A22253 (Clear QP cleans up the QP and prepares it to receive
a new Query Step.

121

.....

—

—

A A

A ey

A

w

N

TvTwTw

122

. P aus e L4 v e e v M
R i) v . i , : e P T
- - ' A AT ﬂn..-..-& .,.Mln
ﬂ e Pt =
-ry———
T3 patdo,’,
' dd
e 10e
- 12
Sh 1Cueesy
14
€0
e 19 |OwoD 50
To
-¥
spe) oloioyeg
(Y BuiBog w3 b
snyog Laeny efouon sN1015 Laenp
oju) Buibng &
gy
t 4]
1senday eboy
3
setiog 3 tuy) pooY
2048
[X J s®34r8
T ogu) Buidoy ¥ de15 Aieng ®30d01 1YV
de1§ Lionp 2
[2]
o3l§ XJ8nQ
M- MG LAL BT 8 B8 L 3 8 ¥ t ¢ TV ISIION *
Q3C3ITI3E X
LAwnq N3y nzuvoun 11337 0Nd
PAXILANOD 3.1vaQ 303y OHI (N »87L27T012LvG J3TI40d ‘W O1%7 12O IYOMLNY
‘-
. ‘ (
—_ - s m am— . . — o . - L - v

P Y

Y

"

>

Y B ¥ |

e

e ol

RIEYEY

hal

)

Y

A2226 Update Task Tree

Abstract: Checks for query completion, removes old informa-
tion, and deletes the query from the task tree.

Upon the completion of a QS, it removes the QS from the
task tree, removes any old intermediate relations, and checks
for the completion of the query.

A22261 Remove From Task Tree removes the QS from the Task
tree.

A22262 Determine Query Completion Status decides if the
query is completed. If so, it tells the frontend the
location of any answer relation.

A22263 Remove 0l1ld Intermediate Relations causes the MSU to
delete any old temporary relation(s) used by this query step.

L 2

123

P
.
.

e

. \ , l:,ll...illa.xiv.i.u!I\..!\
| . e - D S e - FH __trenityreisdciowg 8ot M
~. - ..
r L LI L2
? - SIundiny uorieing
fiern
LIVTE Y 3% Yol
By
[}
R _
s o o0, 1
3 o) 180} e
woJs 4 Lol
10 g LXY1 LY wsD)
LIT-TH 2 3% Y 13
<
€0 [IIETRT-FT Y]
v pe) o0os01g |®IO!PRwioly)
p1o
oAy
Lo
[B 19
sIw1Cwo) SO
T3 8 L9 S vy b e v IsinpN . T T
13y un..—owﬁomm
tAXILNOD 31¥q ¥IJU3Y PR/L2/T 1IN JItued W 9C CRHYOMLNY
f
. (1.

124

———— I RN ot b at o Bask Sy Bach vt Suat e Siun dietie Jd i B Ar i AU AR ~ - — — -

A3 Shutdown

Abstract: Provides a safe, orderly method of terminating the
operations of the DBMS.

When the shutdown command is received, the FE is locked
to prevent other queries from entering the system. Any
existing queries in the system will run to completion
(exception; stopped jobs will be killed). Once all queries
have completed, all permanent data is saved, and a shutdown
reply is sent.

A31 Lockout New Queries causes the frontend to stop
listening for queries.

A32 Save Permanent Data causes any permanent files to be
sent to the mass storage unit.

A33 Send Shutdown Reply Msgs informs the users that we are
closed.

125

O S DT 3

...........
..........

IR S A Jatan i

. @ A e @ e . e e
)
S - 0qefs . K
1E3UNN =033 umopynys 1371014 1°Ev/01/d408440 1 300N
¢
10 «@}—————m—]
° Kydny £ csey
vaoDINyg UaopINug
pues
A

— o109

peros 119 IUeUCeIBy

®rog

(]
STBT B3V§XG
[}
\
A EIEY) e
3 NOND>0Y
t -

Py veopInuUg
NSTI95TT87a™ 3V 8 § L 9 § ¥ € U T ISIIW
43qN3Ia X 103y ON3¥94E1193r0Nd
11IX3ILINOD 3190 R] oNINEZN $8/7L2/11122%3 Ji1wvod M ey eq 3dedN0oHINY

120

’
P
o
!
d
L
4
q
4
q
4
4
4
.
q
z
!
1
1
q
1
!

v
A

Al

Y Y Y T TRV OvVr -
-
3
|
3

s

'

Data Dictionary for the

Date Elements

- 1

127

R L UL
PRI I AR IR PSP SRR
oot adand ol as a="a ia 'a -y’

/*****ll’***{*******{l***Qlﬂl*'INI'*I"lll**lﬂlI’i**’*******{*i**/

NAME: BCP Cmd y
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A user command to modify the status of a .
Query. o
DATA TYPE: BCP Command s
MIN VALUE: X
MAX VALUE:
RANGE:
VALUES:
PART OF: Cmd
Queue of Incoming BCP Msg)
COMPOSITION:)
ALTASES:
SOURCES: Execute Preliminary DBMS Functions (A212-2)

Determine BCP Action (A222-1)
DESTINATIONS: Execute BCP Cmd (A222-2)
Queue FE Msgs (A212-5)

? RELATED REQUIREMENT NUMBER:)
-~ VERSION: 1.0 R
3 DATE: 11/16/84 T
[AUTHOR: Capt Dale M. Pontiff RN
—
JEERBERRREERERDREERTRIRER R RIIRIER TR RIRTR R RRER KRR RN [:
NAME: BCP Cmd Pkt N
TYPE: Data Element T
PROJECT: BCP Sl
DESCRIPTION: Part of a BCP command being passed from the FE i
to the BCP.
DATA TYPE: BCP Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES: .
PART OF: Communication Packet between FE and BCP
COMPOSITION:
ALIASES:
SOURCES: Provide Frontend DBMS Functions (A2-1)
Send FE Msgs (A21-3) o
DESTINATIONS: Provide BCP Functions (A2-2) %»5

Receive BCP Msgs (A22-1)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M, Pontiff

128

]
JRRREE RN R [y
NAME: BCP Init Pkt I
TYPE: Data Element ’
PROJECT: BCP S
DESCRIPTION: An initialization packet sent from the FE to
the BCP to determine if the BCP is active.
DATA TYPE: BCP control command L
MIN VALUE: o
MAX VALUE:).
RANGE: :
VALUES:
PART OF: Communication Packet between FE and BCP
) COMPOSITION:
ALIASES: -
* SOURCES: Init Frontend (Al-2))
: DESTINATIONS: 1Init BCP (Al-=4)
1 RELATED REQUIREMENT NUMBER:
f VERSION: 1.0 ‘
DATE: 11/16/84 -
AUTHOR: Capt Dale M. Pontiff ’
2
¢ [T e 33T NI I T T I I TR [
C NAME: BCP Status Pkt ;‘-*~
TYPE: Data Element S
PROJECT: BCP Sy
DESCRIPTION: A control packet passed from the BCP to the S
FE to indicate that the BCP is active. el
DATA TYPE: SR
MIN VALUE: i*“
MAX VALUE: L
RANGE: o
VALUES:
PART OF: Communication Packet between FE and BCP
COMPOSITION: RO
ALIASES: »
SOURCES: Init BCP (Al-4) -
DESTINATIONS: 1Init Frontend (Al-2)
RELATED REQUIREMENT NUMBER:
VERSION: 1.0 Cen
DATE: 11/16/84)

AUTHOR: Capt Dale M. Pontiff

/***/

NAME: BCP Startup -
TYPE: Data Element]
PROJECT: BCP -

DESCRIPTION: Startup control to power up and initialize the

backend control processor,
DATA TYPE: e
MIN VALUE: .
MAX VALUE:)
RANGE:
VALUES:
PART OF: Startup DBMS
COMPOSITION: N
ALIASES: - -
SOURCES: Human Intervention (Al - Cl) '
DESTINATIONS: Startup BCP (A1-3) :
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84 -
AUTHOR: Capt Dale M. Pontiff '

/***/

(NAME: Buffer Address -

s TYPE: Data Element F,,
PROJECT: BCP o
DESCRIPTION: Memory page address in the MBU. A
DATA TYPE: pointer T
MIN VALUE: N
MAX VALUE: y o
RANGE: E
VALUES: |
PART OF: iy
COMPOSITION: .
ALTASES: g
SOURCES: Provide Mass Store Functions (A2-3))

Provide QP DBMS Functions (A2-5)
DESTINATIONS: Provide Memory Buffer Functions (A2-4)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0 7
DATE: 11/16/84 L
AUTHOR: Capt Dale M. Pontiff .

...........................

...

...
..............................

...................

/***/

NAME: Cmd
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: A complete backend command send from host system.
DATA TYPE: Backend Command

MIN VALUE:

MAX VALUE:

RANGE:
VALUES:
PART OF: Queue of Incoming FE Msgs
COMPOSITION: DDL Cmd
BCP Cmd
ALIASES: Raw Cmd, Correct Cmd, Legal Cmd
SOURCES:
DESTINATIONS:
RELATED REQUIREMENT NUMBER:
VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M, Pontiff

/***/

NAME: Cmd Pkt
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: Part of a backend command being passed from
host to backend.

DATA TYPE: Backend Command

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF:

COMPOSITION: Communication Packet between Host and Backend
DDL Cmd
BCP Cmd

ALTIASES:

SOURCES: Qutside of Backend Environment (A-0)

DESTINATIONS: Provide Relational DBMS Support (A-0)
Provide DBMS Functions (A0-2)
Provide Frontend DBMS Functions (A2-1)
Receive FE Msgs (A21-1)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

..,

-
e
o« -
e
P
s.

/***/

NAME:

TYPE:
PROJECT:
DESCRIPTION:
DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:

ALIASES:
SOURCES:
DESTINATIONS:

VERSION:
DATE:
AUTHOR:

NAME:

TYPE:
PROJECT:
DESCRIPTION:
DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:
ALTASES:
SOURCES:
DESTINATIONS:

VERSION:
DATE:
AUTHOR:

Correct Cmd

Data Element

BCP

A syntactically correct backend command
Backend Command

Cmd
DDL Cmd
BCP Cmd

Analyse Syntax (A2122-1)
Verify Access (A2122-2)

RELATED REQUIREMENT NUMBER:

1'0
11/16/84
Capt Dale M., Pontiff

/***/

Correct Data

Data Element

BCP

A syntactically correct data file
Input File

Data

Analyse Syntax (A2122-1)
Verify Access (A2122-2)

RELATED REQUIREMENT NUMBER:

1.0
11/16/84
Capt Dale M, Pontiff

132

A0 R S B e R Phamse s s e Base e dae~ipmr Bt T P, T T Ty —TTr “_\—vk‘ﬂrv’
.‘-'..'

.
’ 4
g [IR I IR [
& NAME: Correct Query s
g TYPE: Data Element ’
9 PROJECT: BCP :
: DESCRIPTION: A syntactically correct query string]
DATA TYPE: ASCII Query String Lo
MIN VALUE: R
MAX VALUE:) "
RANGE:
VALUES:
PART OF: Query .
COMPOSITION: O
ALIASES:
SOURCES: Analyse Syntax (A2122-1) ' I
DESTINATIONS: Verify Access (A2122-2) .
RELATED REQUIREMENT NUMBER: :
VERSION: 1.0 I
DATE: 11/16/84 o
AUTHOR: Capt Dale M., Pontiff) |
JREERREEERRRRRRN RN RN R RN RRERR RN RN RR NN [j',f
NAME: Data T
TYPE: Data Element]
PROJECT: BCP }
DESCRIPTION: Complete data input file send from host system. T
DATA TYPE: Input File
MIN VALUE: o
MAX VALUE: . d
RANGE: t 4
VALUES: -
PART OF: Queue of Incoming FE Msgs e
COMPOSITION:]
ALIASES: Raw Data, Correct Data, Legal Data BRI
SOURCES: S
DESTINATIONS: ' .
RELATED REQUIREMENT NUMBER:
VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff
! -
R
RIS
133 RO
------------ e el S T e e e e e

Ty T S e e e ———————— : -
N) B S B A et e . . - . . . Py N

/***/

NAME: Data Dic o

: TYPE: Data Element »
PROJECT: BCP o
DESCRIPTION: Data Dictionary which defines all the domains

and relations in the DB.
DATA TYPE: Data Dictionary

' MIN VALUE: -

| MAX VALUE: »
RANGE:]
VALUES: .
PART OF: Queue of Incoming FE Msgs
COMPOSITION:

' ALIASES: - :

' SOURCES: Manage DB Data Dic (A212-3) Yo

Determine FE Action (A212-1)

DESTINATIONS: Manage DB Data Dic (A212-3)
Execute Preliminary DBMS Functions (A212-2)
Verify Access (A2122-2)

PUY

- Optimize Query (A2122-4) v 1

! RELATED REQUIREMENT NUMBER: ' !
VERSION: 1.0 e
DATE: 11/16/84 -
AUTHOR: Capt Dale M. Pontiff s

. ey

| ‘» PRIy I R e e R e e R R A A 22 3 R
NAME: Data Dic Pkt
TYPE: Data Element .

- PROJECT: BCP RS

i DESCRIPTION: Part of the data dictionary being passed i*“‘

- between MSU and the FE.)
DATA TYPE: Data Dictionary]
MIN VALUE: .
MAX VALUE:]

, RANGE: _

’ VALUES: ’

' PART OF: Communication Packet between MSU and the FE 1
COMPOSITION: '
ALTIASES:
SOURCES: Provide Frontend Functions (A2-1)

. Provide Mass Storage Functions (A2-3) A

! DESTINATIONS: Provide Frontend DBMS Functions (A2-1))

Provide Mass Storage Functions (A2-3) o
Receive FE Msgs (A21-1) o
RELATED REQUIREMENT NUMBER:

[LI R
A f

: VERSION: 1.0
 _ DATE: 11/16/84
) “ AUTHOR: Capt Dale M. Pontiff

134

"
...J
-.. 1
4
._:_.{
=]

y

/***/

NAME:

TYPE:
PROJECT:
DESCRIPTION:

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:

ALTASES:
SOURCES:

DESTINATIONS:

Data Pkt

Data Element

BCP

Part of a input data file (of new tuples)
being passed from host to backend.

Tuple data

Communication Packet between Host and Backend
" " " FE and MSU

OQutside of Backend Environment (A-0)
Provide Frontend DBMS Function (A2-1)
Provide Mass Store Functions (A2-3)
Provide Relational DBMS Support (A-0)
Provide DBMS Functions (A0-2)

Provide Frontend DBMS Functions (A2-1)
Provide Mass Store Functions (A2-3)
Receive FE Msgs (A21-1)

RELATED REQUIREMENT NUMBER:

VERSION:
DATE:
AUTHOR:

..........
S Wt et -

. R PR o
e Tamammt At e T T e et e

1.0
11/16/84
Capt Dale M. Pontiff

135

................................
''''''''''''''' "

LAFUL YL A e
P ol SR S S T T

Jdantn S e s

-
’

|-

. e e e e e
A L
P
. [.

| 4]

3
”
LT

/********i**/

NAME:

TYPE:
PROJECT:
DESCRIPTION:

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:

COMPOSITION:

ALIASES:
SOURCES:

DESTINATIONS:

DB Page Pkt

Data Element

BCP

Part of a data page being passed between the
MBU and a QP or the MSU,

Relational Data Page

Communication Packet between MBU and QP or
MSU.

Provide QP DBMS Functions (A2-5)
Provide Memory Buffer Functions (A2-4)
Provide Mass Storage Functions (A2-3)
Provide QP DBMS Functions (A2-5)
Provide Memory Buffer Functions (A2-4)
Provide Mass Storage Functions (A2-3)

RELATED REQUIREMENT NUMBER:

VERSION:
DATE:
AUTHOR:

1.0
11/16/84
Capt Dale M, Pontiff

/***/

NAME:

TYPE:
PROJECT:
DESCRIPTION:

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:
ALTIASES:
SOURCES:
DESTINATIONS:

DB saved

Data Element

BCP

A control variable indicating that the
database has been saved on disk.
Control Variable

Save Permanent Data (A3-2)
Send Shutdown Reply (A3-3)

RELATED REQUIREMENT NUMBER:

VERSION:
DATE:
AUTHOR:

1.0
11/16/84
Capt Dale M, Pontiff

136

T —

‘) o G et
PR Kl PR .
PRI a - .

AR .
. e
v n P A A P
o [.
e fa e e e . .
‘L Cel e 0 .
SPLIT I ST R S

/***/

NAME: DDL Cmd

TYPE: Data Element

PROJECT: BCP

DESCRIPTION: A DBA command to modify the Data Dictionary.
DATA TYPE: Data Definition Language Command

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF: Cmd

COMPOSITION:

ALIASES:

SOURCES: Execute Preliminary DBMS Functions (A212-2)
Verify Access (A212-2)

DESTINATIONS: Manage DB Data Dictionary (A212-3)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

/***/

NAME: DDL Reply
(-. TYPE: Data Element
PROJECT: BCP

DESCRIPTION: Reply message for DDL commands.
DATA TYPE:
MIN VALUE:
MAX VALUE:

RANGE:
VALUES:
PART OF: Reply
COMPOSITION:
ALIASES:
SOURCES: Manage DB Data Dic (A212-3)
DESTINATIONS: Queue FE Msgs (A212-5)
RELATED REQUIREMENT NUMBER: .
VERSION: 1.0 R
DATE: 11/16/84 PR
AUTHOR: Capt Dale M. Pontiff ;"
- R
137 TR
v
e s T NN RPN NN R ENPERSERDEN |

..............

o

/***/

NAME: FE Locked .
TYPE: Data Element [
PROJECT: BCP

DESCRIPTION: A control variable to indicate that the FE

will not except new queries,
DATA TYPE: Control Variable
MIN VALUE: .
MAX VALUE: °
RANGE:
VALUES:
PART OF:)
COMPOSITION: 2
ALIASES:)
SOURCES: Lockout New Queries (A3-1) o)
DESTINATIONS: Save Permanent Data (A3-2)]
RELATED REQUIREMENT NUMBER: S

VERSION: 1.0

DATE: 11/16/84 - {
AUTHOR: Capt Dale M. Pontiff LA
R T T e e L R E Y 4
NAME: File Status
TYPE: Data Element T
(’ PROJECT: BCP e
DESCRIPTION: Status of relation files to be accessed. » B
DATA TYPE: File Status "

MIN VALUE:
MAX VALUE:

St
LU A T T Y ¥

RANGE: SR
VALUES: o
PART OF: o
COMPOSITION: .
ALIASES: S
SOURCES : BCP Table - Co

DESTINATIONS: Manage QP Assignment/Release (A222-4) R
Determine QP Assignment (A2224-2)

[]
RELATED REQUIREMENT NUMBER: 1
VERSION: 1.0 R
DATE: 11/16/84 AR
AUTHOR: Capt Dale M. Pontiff RS
» |
-~ »

138

...
......................

| /***/

NAME: Free QP

TYPE: Data Element

PROJECT: BCP

DESCRIPTION: A control variable indicating that there is an
idle QP.

DATA TYPE: Control Variable

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF:

COMPOSITION:

ALIASES:

SOURCES: Clear QP (A2225-3)

Manage Active Query Steps (A222-5)
DESTINATIONS: Manage QP Assignment/Release (A222-4)

Select Highest Available Leaf (A2224-1)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

/***/

NAME: Frontend Startup
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: Startup control to power up and initialize the
frontend.

DATA TYPE: Control Variable

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF: Startup DBMS

COMPOSITION:

ALIASES:

SOURCES: Human Intervention (Al - C1)

DESTINATIONS: Startup Frontend (Al-1)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0 ! 1

DATE: 11/16/84 T
AUTHOR: Capt Dale M. Pontiff N

Y
e

139

/***/

NAME: Init BCP
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: A control variable to boot the backend control
processor.

DATA TYPE: Control Variable

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF:

COMPOSITION:

ALIASES:

SOURCES: Startup BCP (Al-3)

DESTINATIONS: 1Init BCP (Al-4)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

/***/

NAME: Init FE
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: A control variable to boot the frontend processor.
DATA TYPE: Control Variable

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF:

COMPOSITION:

ALTIASES:

SOURCES: Startup Frontend (Al-1)
DESTINATIONS: 1Init Frontend (Al1-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

Pafharadiae

-
b

-
Lo s

datalat el v a

e

/***/

NAME: Init QP
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: A control variable to boot the query processors.
DATA TYPE: Control Variable
MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF:

COMPOSITION:

ALIASES:

SOURCES: Startup QP (Al1-5)
DESTINATIONS: 1Init QP (A1-6)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

/***/

NAME: Leaf Count

TYPE: Data Element

PROJECT: BCP

DESCRIPTION: Number of bottom-most leaves in the Task Tree.
DATA TYPE: Integer

MIN VALUE:

MAX VALUE:

RANGE: whole numbers

VALUES:

PART OF:

COMPOSITION:

ALIASES:

SOURCES: Select Highest Available Leaf (A2224-1)

DESTINATIONS: Determine QP Assignment (A2224-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M, Pontiff

>]

141

..

/***/

NAME: Legal BCP Cmd

TYPE: Data Element

PROJECT: BCP

DESCRIPTION: A valid command to the BCP with proper user
access.

DATA TYPE: Backend Command

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF: Cmd

COMPOSITION:

ALTASES:

SOURCES: Verfiy Access (A2122-2)
Execute Preliminary DBMS Functions (A212-2)

DESTINATIONS: Queue FE Msgs (A212-5)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0

DATE: 11/16/84
AUTHOR: Capt Dale M, Pontiff

/***/

NAME: Legal Cmd
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A valid backend command with proper user access.
DATA TYPE: Backend Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Cmd
COMPOSITION: DDL Cmd
BCP Cmd
ALIASES:
SOURCES: Verfiy Access (A2122-2)

DESTINATIONS: Log Transaction (A2122-3)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

142

.

-

-y

y-

[
Jad R Rl e ey e P r ety Yy
4 NAME: Legal Data ®
> TYPE: Data Element s
S PROJECT: BCP :
g DESCRIPTION: A valid input data file with proper user access.
b DATA TYPE: Input File ot
4 MIN VALUE: A
) MAX VALUE: >
i RANGE:
| VALUES:
PART OF: Data
Queue of Outgoing FE Msgs
§ COMPOSITION: } ,
i ALTASES: ®
s SOURCES: Verfiy Access (A2122-2) .
i Execute Preliminary DBMS Functions (A212-2)
s DESTINATIONS: Queue FE Msgs (A212-5)
RELATED REQUIREMENT NUMBER:
VERSION: 1.0 »
DATE: 11/16/84 oo
AUTHOR: Capt Dale M, Pontiff T
JEERERRRRRERE AR R R RN R R RRRRRERE [;;;:
 _
NAME: Legal DDL Cmd R
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A valid Data Definition Command with proper user
access.,
DATA TYPE: Backend Command

MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Cmd
COMPOSITION: »
ALIASES:
SOURCES: Verfiy Access (A2122-2)
Execute Preliminary DBMS Functions (A212-2)
DESTINATIONS: Manage DB Data Dic (A212-3)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0 e
DATE: 11/16/84 R
AUTHOR: Capt Dale M. Pontiff i
’
143 t:
.

..............

AoASREMAS . SIS aS am s

R,

- - v B T R T e

/**i****/

NAME:

TYPE:
PROJECT:
DESCRIPTION:
DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:
ALIASES:
SOURCES:
DESTINATIONS:

Legal Query

Data Element

BCP

A valid Query with proper user access.
ASCII Query String

Query

Verfiy Access (A2122-2)
Log Transaction (A2122-3)
Optimize Query (A2122-4)

RELATED REQUIREMENT NUMBER:

VERSION:
DATE:
AUTHOR:

1.0
11/16/84
Capt Dale M. Pontiff

/***/

NAME:

TYPE:
PROJECT:
DESCRIPTION:

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:
ALTASES:
SOURCES:
DESTINATIONS:

Load Init Pages

Data Element

BCP

Structure tells the paging system what types
of pages are need during the initial load and
where to load the pages in the MBU,

Allocate Buffer Space (A2225-1)
Manage Paging (A2225-2)

RELATED REQUIREMENT NUMBER:

VERSION:
DATE:
AUTHOR:

1.0
11/16/84
Capt Dale M. Pontiff

144

AN A A]

—— e

- ="

D N R

L . o
AT

RS S .

I : .

[T RN

PR

R — — -7 . P . T ——————— T —~—

/***/

NAME: Multiple QPs -
TYPE: Data Element ’
PROJECT: BCP
DESCRIPTION: A control variable used to determine if more
than one QP has been assigned to a Query Step.
DATA TYPE: Control Variable e
MIN VALUE: ="
MAX VALUE: ’
g RANGE: ‘
i VALUES:
! PART OF:
s COMPOSITION:
i ALIASES: ;
SOURCES: Determine QP Assignment (A2224-2)
[DESTINATIONS: Create Compression Node (A2224-3)
RELATED REQUIREMENT NUMBER:
VERSION: 1.0 .
& DATE: 11/16/84 ;o
AUTHOR: Capt Dale M. Pontiff .
[T II TN IR RR N [
u ‘;’ NAME: Optimized Query 2
. TYPE: Data Element :
] PROJECT: BCP
g DESCRIPTION: A Query stored in an optimized query tree.
; DATA TYPE: Query Tree
- MIN VALUE: -
‘ MAX VALUE: { """
4 RANGE: :
i VALUES: o
3 PART OF: Queue of Outgoing FE Msgs T
% COMPOSITION: L
S ALIASES: Query Tree e
SOURCES: Optimized Query (A2122-4)]
Execute Preliminary DBMS Functions (A212-2)
Determine BCP Action (A222-1)
DESTINATIONS: Queue FE Msgs (A212-5)
Add to Task Tree (A222-3)
RELATED REQUIREMENT NUMBER:
]
VERSION: 1.0 L
DATE: 11/16/84 i,
AUTHOR: Capt Dale M. Pontiff N

145

.......

/***/

NAME:

TYPE:
PROJECT:
DESCRIPTION:

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:
ALTIASES:
SOURCES:

DESTINATIONS:

Optimized Query Pkt

Data Element

BCP

Part of an optimized query tree being passed
from the FE to the BCP.

Comm Packet

Communication Packet between FE and BCP

Provide Frontend DBMS Functions (A2-1)
Send FE Msgs (A21-3)

Provide BCP Functions (A2-2)

Receive BCP Msgs (A22-1)

RELATED REQUIREMENT NUMBER:

VERSION:
DATE:
AUTHOR:

1.0
11/16/84
Capt Dale M. Pontiff

/***/

NAME:

TYPE:
PROJECT:
DESCRIPTION:

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:

COMPOSITION:
ALIASES:
SOURCES:

DESTINATIONS:

Output

Data Element

BCP

A complete output relations for a retrieval
Query from the MSU.

Output Relation (file)

Queue of Incoming FE Msgs
Queue of Outgoing BCP Msgs

Determine FE Action (A212-1)
Build Reply (A212-4)

Queue FE Msgs (A212-5)

Build Reply (A212-4)

RELATED REQUIREMENT NUMBER:

VERSION:
DATE:
AUTHOR:

1.0
11/16/84
Capt Dale M. Pontiff

146

-
.

A

* '
_Aaa g v D

@or. o

............................
......................................

/************************{*************************i****/

NAME : Output Pkt -

TYPE: Data Element '
PROJECT: BCP

DESCRIPTION: Part of a output relation being passed between
processors, oS
DATA TYPE: Output Relation gty
MIN VALUE: o
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Communication Packet between Host and Backend
ALIASES: o]
SOURCES: Provide Relational DBMS Support (A-0)
Provide DBMS Functions (A0-2)
Provide Frontend DBMS Functions (A2-1)
Provide Mass Store Functions (A2-3)
- Send FE Msgs (A21-3) ;
5 DESTINATIONS: Provide Frontend DBMS Functions (A2-1) N
b Receive FE Msgs (A21-1) RN
1 Outside of Backend Environment (A-0)

- RELATED REQUIREMENT NUMBER:
o VERSION: 1.0 i
- DATE: 11/16/84 :

AUTHOR: Capt Dale M., Pontiff

[asud e inas sus v R TN G e M5 e SFaL B T b i I PSS G SR SRS etk Rar St e G niih ML SN S P SUIL Y —

/***/

: NAME: Page Request
| TYPE: Data Element
' PROJECT: BCP

DESCRIPTION: A page request from a QP.
DATA TYPE:
: MIN VALUE:
' MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Queue of Incoming BCP Msgs
ALTASES:
SOURCES: Determine BCP Action (A222-1)
DESTINATIONS: Manage Active Query Step (A222-5)
Manage Paging (A2225-2)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M, Pontiff

/***/

NAME: Page Request Pkt
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: Part of a page request message being passed
from a QP to the BCP.

DATA TYPE: Paging control data

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF: Communication Packet between BCP and QP

COMPOSITION:

ALTASES:

SOURCES: Provide QP DBMS Functions (A2-~5)

DESTINATIONS: Provide BCP Functions (A2-2)
Receive BCP Msgs (A22-1)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

/***/

NAME:

TYPE:
PROJECT:
DESCRIPTION:

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:
ALIASES:
SOURCES:

DESTINATIONS:

RELATED REQUIREMENT NUMBER:

VERSION:
DATE:
AUTHOR:

/***/

NAME:
TYPE:
PROJECT:

- DESCRIPTION:

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:
ALTIASES:
SOURCES:

DESTINATIONS:

RELATED REQUIREMENT NUMBER: R

VERSION:
DATE:
AUTHOR

Paging Info

Data Element

BCP

Structure used to tell the QPs which pages of
the MBU to access and what is stored in each

page.

Manage Active Query Steps (A222-5)
Manage Paging (A2225-2)
Queue BCP Msgs (A222-7)

1.0
11/16/84
Capt Dale M. Pontiff

Paging Info Pkt

Data Element

BCP

Part of a paging message being passed from the
BCP to a QP.

Paging control data

Communication Packet between BCP and QP

Provide BCP Functions (A2-2) Lo
Send BCP Msgs (A22-3) ANENES
Provide QP DBMS Functions (A2-5) DN

1.0
11/16/84 Sl
Capt Dale M. Pontiff ';5ﬁﬂ

1= e
. I- ‘-
b

149

L
VAR R AR e e e I R e Y P Ry,
NAME: Preempt _
TYPE: Data Element []
PROJECT: BCP
DESCRIPTION: A control variable to cause a Query to be
preempted.
DATA TYPE: Control Variable o
MIN VALUE: N
MAX VALUE: »
RANGE:
VALUES: j
PART OF:]
COMPOSITION: L
ALIASES: . b
SOURCES: Execute Cmd (A222-2) »
DESTINATIONS: Determine Which Query Steps To Preempt ,
(A2224-4) : 1
Manage QP Assignment/Release (A222-4) o
RELATED REQUIREMENT NUMBER:)
VERSION: 1.0 » T
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff
A e s L e e Ty ey e I ey a2y,
b : ' -
| (.,, NAME: Preempt QS » 3
TYPE: Data Element S
PROJECT: BCP
DESCRIPTION: A control variable to cause a Query Step to be RN
preempted (stop any new paging). SRR
DATA TYPE: Control Variable oo
MIN VALUE: L
MAX VALUE: R
RANGE: DR
VALUES: e
PART OF:
I COMPOSITION: »
. ALIASES: - 1
SOURCES: Determine Which Query Steps To Preemmpt T
(A2224-4) R
Manage QP Assignment/Release (A222-4) Sl
» DESTINATIONS: Manage Active Query Steps (A222-5) SRURAS
: Manage Paging (A2225-2) .""’
? Clear QP (A2225-3) .
: RELATED REQUIREMENT NUMBER: 2]
. N
: VERSION: 1.0 R
' DATE: 11/16/84 RN
i AUTHOR: Capt Dale M. Pontiff]
ey R
: :\.‘. ..1
. 150 S
i v
R
e e T T S T R AN B

/***/

NAME: Priority
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: A priority value to determine the order in
which query steps are executed.

DATA TYPE: Integer

MIN VALUE: 0 (high priority)

MAX VALUE: 255 (low priority)

RANGE:

VALUES:

PART OF:

COMPOSITION:

ALIASES:

SOURCES: Determine Priority (A2223-1)

DESTINATIONS: Join to Task Tree (A2223-2)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

/***/

i (NAME: QP Init Pkt
‘ “ TYPE: Data Element
PROJECT: BCP

DESCRIPTION: An initialization packet sent from the BCP to
the QPs to determine which QPs are active.
DATA TYPE:
i MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Communication Packet between BCP and QP
COMPOSITION:
] ALTASES: 1
‘ SOURCES: Init BCP (Al-4) Sl
DESTINATIONS: 1Init QP (Al1-6) el
RELATED REQUIREMENT NUMBER:

B 4

VERSION: 1.0 o
) DATE: 11/16/84 ’ 1
' AUTHOR: Capt Dale M. Pontiff

151 ffﬁ;;

.....

/***/

NAME: QP Startup
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: Startup control to power up and initialize the
query processors.

DATA TYPE:

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF: Startup DBMS

COMPOSITION:

ALIASES:

SOURCES: Human Intervention (Al - C1)

DESTINATIONS: Startup QP (Al-5)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M., Pontiff

/***/

NAME: QP Status Pkt
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: A control packet passed from the QPs to the
BCP to indicate which QPs are active,

DATA TYPE:

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF: Communication Packet between BCP and QP

COMPOSITION:

ALTASES:

SOURCES: Init QP (Al1-6)

DESTINATIONS: 1Init BCP (Al-4)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M, Pontiff

152

LI
R voe ’
o
IR IS SV

'@ e
et T Tl)
e el
A S

/***/

NAME:

TYPE:
PROJECT:
DESCRIPTION:

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:
ALIASES:
SOURCES:

DESTINATIONS:

QP Stopped

Data Element

BCP

A control variable indicating the a QP has
stopped execution of a query step.

Control Variable .

Clear QP (A2225-3)

Manage Active Query Steps (A222-5)
Manage QP Assignment/Release (A222-4)
Trim Branch (A2224-5)

RELATED REQUIREMENT NUMBER:

VERSION:
DATE:
AUTHOR:

NAME:

TYPE:
PROJECT:
DESCRIPTION:

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:
ALTASES:
SOURCES:

DESTINATIONS:

VERSION:
DATE:
AUTHOR:

1.0
11/16/84
Capt Dale M. Pontiff

/***/

QS Complete

Data Element

BCP

A control variable indicating that a
Query Step has completed,

Control Variable

Manage Paging (A2225-2)

Manage Active Query Steps (A222-5)

Update Task Tree (A222-6)

Clear QP (A2225-3)

Remove Old Intermediate Relations (A2226-3)
Remove from Task Tree (A2226-2)

RELATED REQUIREMENT NUMBER:

1.0
11/16/84
Capt Dale M. Pontiff

153

.....................

gt et .

...

PSRV P NN

B JRreL Sau g SOH QS M CIMEL I Ai Bun ae P y T T o T Y EMdCA i Ave auth o i con o]

/***/

}A NAME: Query -
4 TYPE: Data Element b
PROJECT: BCP
DESCRIPTION: Complete ASCII query string send from host system.

DATA TYPE: Query String

MIN VALUE: o
MAX VALUE: -
RANGE: '
VALUES:

PART OF: Queue of Incoming FE Msgs

COMPOSRITION:

ALIASES: Raw Query, Correct Query, Legal Query

SOURCES:

DESTINATIONS:

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff -

/***/

NAME: Query Pkt S

TYPE: Data Element -

PROJECT: BCP T

DESCRIPTION: Part of a Query being passed from the oo
Host System to the Backend System £

DATA TYPE: ASCII String i

MIN VALUE: LR

MAX VALUE: T

RANGE: -

VALUES:

PART OF: Communication Packet between Host and Backend

COMPOSITION:

ALTIASES:

SOURCES: Outside of Backend Environment (A-0)

DESTINATIONS: Provide Relational DBMS Support (A-0)
Provide DBMS Functions (A0-2)
Provide Frontend DBMS Functions (A2-1)
Receive FE Msgs (A21-1)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

154

...

-~ -

/***/

NAME:

TYPE:
PROJECT:
DESCRIPTION:
DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:
ALIASES:
SOURCES:

DESTINATIONS:

Query Status

Data Element

BCP

Status of a Query Step
Query Status

Manage QP Assignment/Release (A222-4)

Manage Active Query Steps (A222-5)

Determine QP Assignment (A2224-2)

Manage Paging (A2225-2)

Manage QP Assignment/Release (A222-4)

Manage Active Query Steps (A222-5)

Determine QP Assignment (A2224-2)

Manage Paging (A2225-2)

Determine Which Query Steps to Preempt
(A2224-4)

RELATED REQUIREMENT NUMBER:

VERSION:
DATE:
AUTHOR:

1.0
11/16/84
Capt Dale M. Pontiff

155

‘ata o 4

ag e, AR AN
POV ST Y W WUNE WPV SN

/***/

NAME: Query Step
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A single relational operations to be performed
on one or two relational files.
DATA TYPE: Query Step
MIN VALUE:
MAX VALUE:
RANGE:]
VALUES: .
PART OF: :
COMPOSITION:]
ALIASES: ® J
SOURCES: Select Highest Available Leaf (A2224-1) y
Manage QP Assignment/Release (A222-4)
Manage Active Query Steps (A222-5)
Allocate Buffer Space (A2225-1) SR
Determine QP Assignment (A2224-3) R
DESTINATIONS: Queue BCP Msgs (A222-7) .
‘ Manage Active Query Steps (A222-5) T
Allocate Buffer Space (A2225-1)
Determine QP Assignment (A2224-3)
RELATED REQUIREMENT NUMBER: e
(VERSION: 1.0 o)
DATE: 11/16/84 e
AUTHOR: Capt Dale M, Pontiff Ll
[J
R
156 T
* .

................ -4\"'

- S e e el e e L T e s T .
AR YNE SR AT WA L WAL WY VR W WA W S R il PP AP SN . NI I RPN Tt P SR AT SR T Y SRR Thit WP T Ul Dol el Tt G UYL 15 |

E NAME:
TYPE:
3 PROJECT:
- DESCRIPTION:

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:
ALTASES:
SOURCES:

DESTINATIONS:

VERSION:
DATE:
AUTHOR

NAME:

TYPE:
PROJECT:
DESCRIPTION:
DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:

ALIASES:
SOURCES:

DESTINATIONS:

VERSION:
DATE:
AUTHOR:

b . /l*****l****{***/

Query Step Pkt

Data Element

BCP

Part of a query step being passed from the BCP
to a QP.

Query Step (operation)

Communication Packet between BCP and QP

Provide BCP Functions (A2-2)
Send BCP Msgs (A22-3)
Provide QP DBMS Functions (A2-5)

RELATED REQUIREMENT NUMBER:

1.0
11/16/84
Capt Dale M. Pontiff

/***/

Query Tree

Data Element

BCP

An Optimized Query rebuilt within the BCP,
Query Tree

Task Tree

Query Header

Query Step

Optimized Query

Execute Cmd (A222-2)
Determine BCP Action (A222-1)
Add to Task Tree (A222-3)
Determine Priority (A42223-1)
Join to Task Tree (A2223-2)

RELATED REQUIREMENT NUMBER:

1.0 A
11/16/84 t
Capt Dale M. Poatiff

157

T
. "9
. 9
- -y
'
o
»
N e
K
N TN
< ~_'|
ey
RO K
-l
LA
<
. ~d
. 4
s -
. B
- 4
)
B
N
oA
- -
L
ST

Lo
L y
AR I Z T E e R R T Ty Y Y Y J
NAME: Queue of Incoming BCP Msgs ;‘*“
TYPE: Data Element _
PROJECT: BCP
DESCRIPTION: A queue of message received by the BCP for
processing.
DATA TYPE: Queue]
MIN VALUE: ;
MAX VALUE: ,]
RANGE: ' O
VALUES:
PART OF: o
COMPOSITION: Optimized Query]
BCP Cmd ®
Page Request 1
ALIASES: ,
SOURCES: Receive BCP Msgs (A22-1) 3
DESTINATIONS: Execute BCP BDMS Functions (A22-2) B
Determine BCP Action (A222-1) RSN
RELATED REQUIREMENT NUMBER: P ‘
VERSION: 1.0
DATE: 11/16/84 Cenene
AUTHOR: Capt Dale M. Pontiff N
T
L p
_— o .

158

...................... e e e
e e T T e e o, R y .

RICRICAES
e N L A e e e A e e A

J R IINTIIINN IR RINR RN RN/ s
t NAME: Queue of Incoming FE Msgs -
TYPE: Data Element {.nq
i PROJECT: BCP RN
- DESCRIPTION: A queue of message received by the FE for S
s processing. DEAER
DATA TYPE: Queue ST
MIN VALUE: N
MAX VALUE:]
RANGE: o
VALUES: T
PART OF: ;
COMPOSITION: Query -
Cmd N 1
Data A
Response '
Data Dic
Output R
ALIASES:]
SOURCES: Receive FE Msgs (A21-1) ;“““
DESTINATIONS: Execute FE DBMS Functions (A21-2) B
Determine FE Action (A212-1)
RELATED REQUIREMENT NUMBER:
VERSION: 1.0 Tl
C DATE: 11/16/84 L
AUTHOR: Capt Dale M. Pontiff ’Qq

/********************-l'l'*******************************-l-*/

NAME: Queue of Outgoing BCP Msgs
TYPE: Data Element
PROJECT: BCP

. DESCRIPTION: A queue of message the BCP must send to other
processors (FE, MSU, QP).
DATA TYPE: Queue
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF:
COMPOSITION: Response
Storage Cmd
Query Step
Paging Info

M AEIERSN
LT PR AR

ALTIASES:
SOURCES: Queue BCP Msgs (A222-7)
Execute BCP DBMS Functions (A22-2)
DESTINATIONS: Send BCP Msgs (A22-3)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M., Pontiff

............
...
...
...
......................................

................

/***/

NAME: Queue of Outgoing FE Msgs -
TYPE: Data Element .rgj
4 PROJECT: BCP

DESCRIPTION: A queue of message the FE must send to other
processors (host, BCP, MSU).

PP

' et et

@ o
AN AN
et e
. v

DATA TYPE: Queue
MIN VALUE:
MAX VALUE:
RANGE:
] VALUES:
] PART OF:
COMPOSITION: Optimized Query
l' BCP Cmd ®
; Valid Data :
Storage Cmd
] Reply
! Output
ALTIASES:
SOURCES: Queue FE Msgs (A212-5) ®
1 Execute FE DBMS Function (A21-2)
{ DESTINATIONS: Send FE Msgs (A21-3) -
f RELATED REQUIREMENT NUMBER: S
VERSION: 1.0 -
(' DATE: 11/16/84 »

AUTHOR: Capt Dale M. Pontiff

/***/

NAME: Raw Cmd
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A complete backend command sent from host system.
DATA TYPE: Backend Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Queue of Incoming FE Msgs
COMPOSITION: DDL Cmd
BCP Cmd
ALIASES:
SOURCES: Receive FE Msgs (A21-1)

: DESTINATIONS: Execute FE DBMS Functions (A21-2)

f Execute Preliminary DBMS Functions (A212-2)
Analyze Syntax (A2122-1)

RELATED REQUIREMENT NUMBER:

1
[
*" VERSION: 1.0
t‘ DATE: 11/16/84
f AUTHOR: Capt Dale M. Pontiff
[/***/
‘ . NAME: Raw Data
L TYPE: Data Element
PROJECT: BCP
DESCRIPTION: Complete data input file sent from host system.
DATA TYPE: Input File
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
- PART OF: Queue of Incoming FE Msgs
= COMPOSITION:
ALIASES:
SOURCES: Receive FE Msgs (A21-1)

DESTINATIONS: Execute FE DBMS Functions (A21-2)
Execute Preliminary DBMS Functions (A212-2)
Analyze Syntax (A2122-1)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0 e
DATE: 11/16/84 L]
AUTHOR: Capt Dale M. Pontiff R

et
ARV

- oY T

_____ g e . —— ———— o o ae

/***/

NAME: Raw Query

TYPE: Data Element

PROJECT: BCP

DESCRIPTION: Complete ASCII query string sent from host system.
DATA TYPE: Query String

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF: Queue of Incoming FE Msgs

COMPOSITION:

ALIASES:

SOURCES: Receive FE Msgs (A21-1)

DESTINATIONS: Execute FE DBMS Functions (A21-2)
Execute Preliminary DBMS Functions (A212-2)
Analyze Syntax (A2122-2)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

/***/

NAME: Reply

TYPE: Data Element

PROJECT: BCP

DESCRIPTION: A reply message from the backend to the host.
DATA TYPE: Reply

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF: Queue of Outgoing FE Msgs

COMPOSITION: DDL Reply
Shutdown Reply

ALIASES:

SOURCES: Build Reply (A212-4) .

DESTINATIONS: Queue FE Msgs (A212-5) ,

RELATED REQUIREMENT NUMBER: "

¥ P . . 0
® ol
'. " B » . . .

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M, Pontiff

163

/***/

. NAME : Reply Pkt o
E TYPE: Data Element '
PROJECT: BCP

DESCRIPTION: Part of a output reply being passed from
backend to host system. 4
; DATA TYPE: Reply to Backend Command or Update Query R
i MIN VALUE: S
. MAX VALUE: ')
RANGE: ;
VALUES:
PART OF:
COMPOSITION: Communication Packet between Host and Backend -
z ALIASES: -
SOURCES: Provide Relational DBMS Support (AOQ) '
j Provide DBMS Functions (AQ0-=2) :
i Provide Frontend DBMS Functions (A2-1)
; Send FE Msgs (A21-3)
‘ DESTINATIONS: Outside of Backend Environment (AQ)

RELATED REQUIREMENT NUMBER: ;'“4
.?

VERSION: 1.0 -
DATE: 11/16/84]
AUTHOR: Capt Dale M. Pontiff IR
/******I’**/ """—'"i
- 1

NAME: Resource Status SO
TYPE: Data Element e
PROJECT: BCP SRR
DESCRIPTION: Status of QPs. el
DATA TYPE: QP Status .

MIN VALUE: L
MAX VALUE: RN
RANGE: e
VALUES:

PART OF: RN
COMPOSITION: |
ALIASES: ~
SOURCES: IR
DESTINATIONS: Determine QP Assignment (A2224-2) Do

Manage QP Assignment/Release (A222-4) "

RELATED REQUIREMENT NUMBER:

VERSION: 1.0 L]
DATE: 11/16/84 S
AUTHOR: Capt Dale M. Pontiff LT

/'I'**/

NAME: Response

TYPE: Data Element

PROJECT: BCP

DESCRIPTION: A complete response message concerning a Query
or BCP Cmd from the BCP,

DATA TYPE: Response

MIN VALUE:
MAX VALUE:

RANGE:
VALUES:
PART OF: Queue of Incoming FE Msgs
Queue of Outgoing BCP Msgs
COMPOSITION:
ALIASES:
SOURCES: Determine Query Completion Status (A2226-2)

Update Task Tree (A222-6)
Determine FE Action (A212-1)
DESTINATIONS: Queue BCP Msg (A222-7)
Build Reply (A212-4)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0

DATE: 11/16/84

AUTHOR: Capt Dale M, Pontiff

(/**************-u-***************'*************************/

NAME: Response Pkt

TYPE: Data Element

PROJECT: BCP

DESCRIPTION: Part of a response passed between the BCP and
FE.

DATA TYPE: Response

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF:

COMPOSITION: Communication Packet between BCP and FE.

ALTIASES:

SOURCES: Provide BCP Functions (A2-2)
Send BCP Msgs (A22-3)

DESTINATIONS: Provide FE DBMS Functions (A2-1)
Receive FE Msgs (A21-1)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84 S
AUTHOR: Capt Dale M, Pontiff ®

165

T PP — R AU EAR gt J Jhen Bt e S S St abi- oiui o SR Sl SEM et T T YW T

/***/

NAME: Shutdown Cmd
- TYPE: Data Element
PROJECT: BCP

DESCRIPTION: A command from the host telling the backend to
begin shutting down.
DATA TYPE: Backend Command
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
PART OF: Cmd
' COMPOSITION:
ALTASES:
SOURCES: Outside of Backend Environment (A0 - I1)
DESTINATIONS: Shutdown System (A0-3)
Lockout New Queries (A3-1)
RELATED REQUIREMENT NUMBER:

LELAR AL e e anes pen

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

/***/

NAME: Shutdown Reply
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: A reply from the backend informing the host
that the backend is idle after receiving a
shutdown command.

DATA TYPE: Reply

MIN VALUE:

MAX VALUE:

RANGE: L
VALUES: ’

PART OF: Reply)
COMPOSITION: . :
ALTASES: 1
SOURCES: Shutdown System (A0-3) o
Send Shutdown Reply (A3-3) -
DESTINATIONS: Outside of Backend Environment (A0 - 01)] !
RELATED REQUIREMENT NUMBER: :
VERSION: 1.0
DATE: 11/16/84 S
AUTHOR: Capt Dale M. Pontiff ST
! —
AT IR R Y e Ty R
i
166)
R
b 4

. AS

... R A A c ot .
WU S B U I B 1 T Lo Ul T T S G Y

NAME:

: TYPE:

* PROJECT:
DESCRIPTION:

- DATA TYPE:

. MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

4 PART OF:

f COMPOSITION:

ALIASES:
SOURCES:
DESTINATIONS:

Startup DBMS

Data Element

BCP

Startup the backend relational DBMS.
(Manual)

Human

Frontend Startup
BCP Startup
QP Startup

Qutside of Backend Environment (AO)
Provide Relational DBMS Support (AO)
Initialize Database System (AO0-1)

RELATED REQUIREMENT NUMBER:

VERSION:
DATE:
AUTHOR:

1.0
11/16/84
Capt Dale M. Pontiff

167

i i e i Al S i S EaAC i o M st - it s S e e e ae R e an e st i ooy

/***/

LA E
, .

NAME: Storage Cmd
TYPE: Data Element
PROJECT: BCP
DESCRIPTION: A command to the MSU to create, delete or
access a data file,
DATA TYPE: MSU Cmd L
MIN VALUE: -
MAX VALUE: ’
! RANGE:
A VALUES:
) PART OF: Queue of Outgoing FE Msgs
: COMPOSITION:
i ALIASES: »
} SOURCES: Verify Access (A2122-2)
- Execute Preliminary DBMS Functions (A212-2)
[Manage DB Data Dic (A212-3)
Build Reply (A212-4)
Remove 0ld Intermediate Relations (A2226-3)
Update Task Tree (A222-6) »
Manage Paging (A2225-3)
Manage Active Query Steps (A222-5)
DESTINATIONS: Queue FE Msgs (A212-5)
Queve BCP Msgs (A222-7)
RELATED REQUIREMENT NUMBER: -
VERSION: 1.0 ,
DATE: 11/16/84 o
AUTHOR: Capt Dale M. Pontiff o
»
’
. .
]
168 :?_:::‘
.

..
...............

'''''''''''''''
................

R T T — =} T — LA S et v

/***/

NAME: Storage Cmd Pkt
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: Part of a MSU command being passed from the
FE or BCP to the MSU,

DATA TYPE: Mass Storage Command

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF: Communication Packet between the FE or BCP
to the MSU

COMPOSITION:

ALTASES:

SOURCES: Provide Frontend DBMS Functions (A2-1)

Send FE Msgs (A21-3)

Provide BCP Functions (A2-2)

Send BCP Msgs (A22-3)
DESTINATIONS: Provide Mass Store Functions (A2-3)
RELATED REQUIREMENT NUMBER:

VERSION: 1.0
DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

169

prr——r—— Tr—r——— T T N W Y N N T T oy~

/*******************i***********************************/

NAME: System Idle
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: A control variable indicating that the backend
is currently idle,

DATA TYPE: Control Flag

MIN VALUE:

MAX VALUE:

RANGE:

VALUES:

PART OF:

COMPOSITION:

ALTIASES:

SOURCES: Provide DBMS Functions (A0-2)
Provide BCP Functions (A2-2)
Execute BCP DBMS Functions (A22-2)
Update Task Tree (A222-6)
Remove from Task Tree (A2226-1)

DESTINATIONS: Shutdown System (AO0-3)
Save Permanent Data (A3-2)

RELATED REQUIREMENT NUMBER:

VERSION: 1.0
o DATE: 11/16/84
(AJTHOR: Capt Dale M, Pontiff

/*'I'***/

NAME:

TYPE:
PROJECT:
DESCRIPTION:

DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:

VALUES:

PART OF:
COMPOSITION:
ALTIASES:
SOURCES:

DESTINATIONS:

RELATED REQUIREMENT NUMBER:

VERSION:
DATE:
AUTHOR:

System Ready

Data Element

BCP

A control variable indicating that the backend
has been initialized.

Control Flag

On --> System Ready;
Off --> System is inoperative

Initialize Database System (AO-1)

Init Frontend (Al-2)

Provide DBMS Functions (A0-2)

Provide Frontend DBMS Functions (A2-1)
Receive FE Msgs (A21-1)

1.0
11/16/84
Capt Dale M. Pontiff
- 4
o
-._ 1
S
)
<Y
oy
.‘_.:-_.:
171 N
b

N N T W T W oy S e ——— PN e o M A At . e et "-v*‘-r"_-"_.f.":'—;f_v'_"'_vv'_-_v,"fv]
PR,
."_-.ll

/***/

NAME: Task Tree s

TYPE: Data Element ». .
PROJECT: BCP IR

DESCRIPTION: A colection of active Query Trees within the BCP, -

) DATA TYPE: Task Tree iy

y MIN VALUE: RS
MAX VALUE: -
RANGE: ’

¢ VALUES:

S PART OF:

{ COMPOSITION: Query Tree

. ALIASES: :
SOURCES: Add to Task Tree (A222-3) =

i Update Task Tree (A222-6) !

: Remove from Task Tree (A2226-1)

2 Trim Branch (A2224-3)

! Create Compression Node (A2224-5)

1 Manage QP Assignment/Release (A222-4) S
Join to Task Tree (A2223-2) ;“~*‘

DESTINATIONS: Add to Task Tree (A222-3) e
Update Task Tree (A222-6) -
Remove from Task Tree (A2226-1)
Trim Branch (A2224-3)
Create Compression Node (A2224-5)

Manage QP Assignment/Release (A222-4) E"'—

Join to Task Tree (A2223-2) C

Select Highest Available Leaf (A2224-1) el
RELATED REQUIREMENT NUMBER: -
VERSION: 1.0 co
DATE: 11/16/84 Vo
AUTHOR: Capt Dale M, Pontiff T

172

/***/

NAME: Trimmed Branch
TYPE: Data Element
PROJECT: BCP

DESCRIPTION: A Query Tree which has been removed from the
Task Tree.

DATA TYPE: Query Tree

MIN VALUE:

MAX VALUE:

At Tt

~E

, RANGE :
! VALUES:
1 PART OF:
3 COMPOSITION:
k ALIASES:
SOURCES: Manage QP Assignment/Release (A222-4)
Trim Branch (A2224-5)
I DESTINATIONS: Execute Cmd (A222-2)
[RELATED REQUIREMENT NUMBER:
' VERSION: 1.0
é DATE: 11/16/84
AUTHOR: Capt Dale M. Pontiff

173

Ml ERACNP A NN - Pl sty T— AGTIM Qi ot Jne MM U BT s el e ora EACNECASIC M A A A o et o e A Pt

T

Data Dictionary for the I

Activity Boxes

R

/***/

NAME: Add to Task Tree
TYPE: Activity
PROJECT: BCP

NUMBER: A2223

DESCRIPTION: Phase the new query into the task tree
according to its priority.

INPUTS: 01, Task Tree

OUTPUTS: 01, Task Tree

CONTROLS: Cl, Query Tree (Optimized Query)
MECHANISMS:

ALIASES:

PARENT ACTIVITY: A222, Execute BCP DBMS Functions
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

/***/

NAME: Allocate Buffer Space
TYPE: Activity

PROJECT: BCP

NUMBER: A22251

DESCRIPTION: Determines how much buffer spaces is needed
(and available) by the Query Step. It then
forwards the Query Step down to the QP, and
causes the paging system to load the initial
pages of the relation.

INPUTS:
OUTPUTS: 01, Query Step

02, Load Init Pages
CONTROLS: Cl, Query Step
MECHANISMS:
ALIASES:

PARENT ACTIVITY: A2225, Manage Active Query Steps
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

.l-..- . . .
L W P Y

LR A/ et e |

SR 20 e e Jas Jiam Sar pare e ———— WY TN T T T R Y Y T T T T Y T T T T T Y N S T YT Ty I T R SR PR R S

/***/

NAME: Analyze Syntax

TYPE: Activity

PROJECT: BCP 5
NUMBER: A21221 .

DESCRIPTION: Checks syntax for all commands and queries.
It also verifies if the relations and/or

fields requested exist in the database. -
INPUTS:
OUTPUTS: 01, Correct Query, Data or Cmd
CONTROLS: Cl, Raw Query, Data, or Cmd
MECHANISMS:
ALIASES:

PARENT ACTIVITY: A2122, Execute Preliminary DBMS Functions T
RELATED REQUIREMENT NUMBER:

VESION: 1.0]
DATE: 11/26/84 S
AUTHOR: Capt. Dale M. Pontiff -]
]

JA At 2 R e Ty L e e e Iy]
1

) NAME: Build Reply D
(¥ TYPE: Activity -
PROJECT: BCP o
NUMBER: A2124 -
DESCRIPTION: Receives responses from the BCP and Output R
relations from the MSU and formats the data to X

be forwarded to the host systen. ad

INPUTS: -
OUTPUTS: 01, Output, Reply and/or Storage Cmd IS
CONTROLS: Cl, Response or Qutput SRS
MECHANISMS: B
ALIASES: e
PARENT ACTIVITY: A212, Execute FE DBMS Functions S
RELATED REQUIREMENT NUMBER: T
VESION: 1.0 g
DATE: 11/26/84 -
AUTHOR: Capt. Dale M. Pontiff s

176 e

/***/

NAME: Clear QP
TYPE: Activity
PROJECT: BCP
NUMBER: A22253

DESCRIPTION: Cleans up the QP and prepares it to receive a
new Query Step.

INPUTS:
OUTPUTS: 0l, Free QP
02, QP Stopped
CONTROLS: Cl, Preempt QS
C2, QS Complete
MECHANISMS:
ALIASES:

PARENT ACTIVITY: A2225, Manage Active Query Steps
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M., Pontiff

/***/

NAME: Create Compression Node
TYPE: Activity

PROJECT: BCP

NUMBER: A22243

DESCRIPTION: Adds a compression node above a node that was
split between two or more QPs.

INPUTS: I1, Task Tree
OUTPUTS: 01, Task Tree
CONTROLS: Cl, Multiple QPs
MECHANISMS:

ALIASES:

PARENT ACTIVITY: A2224, Manage QP Assignment/Release
RELATED REQUIREMENT NUMBER:

[h e T
L
) ST e

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M, Pontiff

/***/

NAME: Determine BCP Actions
TYPE: Activity

PROJECT: BCP

NUMBER: A2221

DESCRIPTION: Reads the message at the top of the queue and
takes the appropriate action.

INPUTS:
OUTPUTS: 01, BCP Cmd
02, Optimized Query (Query Tree)
03, Page Request
CONTROLS: Cl, Queue of Incoming BCP Msgs
MECHANISMS:
ALIASES:

PARENT ACTIVITY: A222, Execute BCP DBMS Functions
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M, Pontiff

/***/

NAME: Determine FE Actions
TYPE: Activity
PROJECT: BCP
NUMBER: A2121
DESCRIPTION: Reads the top message in the queue and calls
the correct module for that message type.
INPUTS:
OUTPUTS: 01, Raw Query, Data or Cmd
02, Data Dic
03, Response or Output
CONTROLS: Cl, Queue of Incoming FE Msgs
MECHANISMS:
ALIASES:

PARENT ACTIVITY: A212, Execute FE DBMS Functions
RELATED REQUIREMENT NUMBER:
VESION: 1.0

DATE: 11/26/84
AUTHOR: Capt., Dale M, Pontiff

/***/

NAME: Determine Priority
TYPE: Activity

PROJECT: BCP

NUMBER: A22231

DESCRIPTION: Generates a priority rating for a query.
INPUTS:

OUTPUTS: 01, Priority
CONTROLS: Cl, Query Tree
MECHANISMS:

ALTASES:

PARENT ACTIVITY: A2223, Add to Task Tree
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

/***/

NAME: Determine QS Requirements
TYPE: Activity

PROJECT: BCP

NUMBER: A22242

DESCRIPTION: Decides if a QP should be allocated to work on
this query step based on system status.
INPUTS: Il, Query Status
I2, File Status
I3, Resource Status
OUTPUTS: 01, Query Step
02, Query Status
03, Multiple QPs
CONTROLS ¢ Cl, Leaf Count
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2224, Manage QP Assignment/Release

RELATED REQUIREMENT NUMBER:
VESION: 1.0

DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

| AT A SV A S LML A SN AL A AL AN TL A S L . aah A Sk M A SRR A LA E S R

/***/

NAME: Determine Query Completion Status
TYPE: Activity

PROJECT: BCP

NUMBER: A22262

DESCRIPTION: Decides if the query is completed. If so, it
tells the frontend the location of any answer
relation.

INPUTS:

OUTPUTS: 01, Response
CONTROLS: Cl, Check Completion
MECHANISMS:

ALIASES:

PARENT ACTIVITY: A2226, Update Task Tree
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M., Pontiff

/***/

NAME: Determine Which Query Step to Preempt
TYPE: Activity

PROJECT: BCP

NUMBER: A22244

DESCRIPTION: Used to stop/abort a job. It causes any QPs
working on the terminated job to stop after
the completion of the current input page.

INPUTS: I1, Query Status
OUTPUTS: 01, Preempt QS
CONTROLS: Cl, Preempt
MECHANISMS:

ALTASES:

PARENT ACTIVITY: A2224, Manage QP Assignment/Release
RELATED REQUIREMENT NUMBER:

VESION: 1.0
. DATE: 11/26/84
= AUTHOR: Capt. Dale M. Pontiff

180

-

- -«

/***/

NAME: Execute BCP Cmd
TYPE: Activity
PROJECT: BCP

NUMBER: A2222

DESCRIPTION: Allows some external job control commands to
affect the system job scheduler.
INPUTS:
OUTPUTS: 01, Response
02, Preempt
03, Query Tree
CONTROLS: Cil, BCP Cmd
02, Trimmed Branch
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A222, Execute BCP DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

/***/

NAME: Execute BCP DBMS Functions
TYPE: Activity

PROJECT: BCP

NUMBER: A222

DESCRIPTION: Executes BCP commands, schedules query steps
to the QPs, and manages the paging algorithm
of each operation.

INPUTS:
OUTPUTS: 01, Queue of Outgoing BCP Msgs
CONTROLS: Cl, System Idle

C2, Queue of Incoming BCP Msgs
MECHANISMS:
ALIASES:

PARENT ACTIVITY: A22, Provide BCP Functions
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt., Dale M, Pontiff

181

LG atns seas suus sea aeme e ars T e T Ry ARG e -t g Sags B Seos Ste S i aarease- el e slue ot g e o LA

/***/

- '*.'.‘_.'.‘7.".‘ -7 ."r]

*‘ NAME: Execute FE DBMS Functions
: TYPE: Activity

. PROJECT: BCP

- NUMBER: A212

DESCRIPTION: Acts on incoming messages from the other
processors, Its major functions are; to
receive and validate queries/commands from the
host, manage the Data Dictionary, pass the
queries down to the BCP, and send replies back
to the host.

INPUTS:

OUTPUTS: 01, Queue of Outgoing FE Msgs
CONTROLS: Cl, Queue of Incoming FE Msgs
MECHANISMS:

ALTIASES:

PARENT ACTIVITY: A21, Provide Frontend DBMS Furnctions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

/***/

& NAME: Execute Preliminary DBMS Functions

L. TYPE: Activity

- PROJECT: BCP

- NUMBER: A2122

jaf DESCRIPTION: Receives raw input from the host system. It

checks the syntax and user access rights, and
: logs the transactions, If it is a retrieval
L; query, it optimizes the query tree.
L INPUTS: I1, Data Dic
OUTPUTS: 01, Optimized Query, Legal Data,
Legal BCP Cmd and/or Storage Cmd

02, Legal DDL Cmd
CONTROLS: Cl, Raw Query, Data or Cmd
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A212, Execute FE DBMS Functions

r'-?

.Ffvy ”

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

182

D T T U S T R
'''''''' S A e T e e e e T e e . A e e e T e ety
LI I LR ILIPYIG- 5 i S U P Y 1 Tl P I U I i A I S B API S U W YR S ¥ YA TP S §

S . AT RN AT U WL
ORI, YR U3 OGN Tl il 1l Y |

POEN

o\

| —AD-A151 892 BRCKEND CONTROL PROCESSOR FOR A MULTI-PROCESSOR 3/3
LRTIONHL DATABASE CDHPUTER SVSTEN(U) ﬁIR FORCE INST
TECH WRIGHT-PRTTERSON AFB OH SCHOO
UNCLASSIFIED D M PONTIFF DEC 84 AFIT/GCS/ENG/84D- 22 F/G 9/2

Y
fleg §i
"" LIEw B2

=z
L2 Jis pee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

i

|

. L_u_...n-_.“.v~.!.._.._.__.._. AL SBPARLY W)

/'l'l"l'f'l*l.*'l'l'"lﬂl*i***I'*'l'**'l"lv!*I’***********i*i*i*****l*ifﬁ***/

NAME: Init BCP
TYPE: Activity
PROJECT: BCP
NUMBER: Al4 M
DESCRIPTION: Causes the BCP to initialize system tables and T
verify that at least one QP is available for S
use. Sends a message to the FE after P
initialization is complete.
{ INPUTS: I1, BCP Init Pkt
. 01, QP Status Pkt
E OUTPUTS: 01, QP Init Pkt
: I1, BCP Status Pkt S
h: CONTROLS : Cl, Init BCP -
MECHANISMS: ¢

ALIASES:
PARENT ACTIVITY: Al, Initialize Database System

, 1 RELATED REQUIREMENT NUMBER:

E!' VESION: 1.0 -
L DATE: 11/26/84 R
AUTHOR: Capt. Dale M. Pontiff
TR I T I6 TN T IE AU I [i
NAME: Init Frontend S
TYPE: Activity RO
PROJECT: BCP o
NUMBER: Al2 ey
DESCRIPTION: Causes the FE to initialize system tables and e
verify that the BCP is available for use. =
INPUTS: 01, BCP Status Pkt Do
OUTPUTS: 01, BCP Init Pkt
02, System Ready
CONTROLS: Cl, Init FE
MECHANISMS:
ALIASES: -
PARENT ACTIVITY: Al, Initialize Database System e

RELATED REQUIREMENT NUMBER:

VESION: 1.0 -
DATE: 11/26/84
AUTHOR: Capt. Dale M., Pontiff

183 ol

................................
.............................

/’i*******************i*****i*&**********’******************/

NAME: Init QP
TYPE: Activity
PROJECT: BCP
NUMBER: Al6

DESCRIPTION: Causes the QP to initialize any internal
fields or tables. Sends a message to the BCP
upon completion.

INPUTS: I1, QP Init Pkt
OUTPUTS: Il1, QP Status Pkt
CONTROLS:: Cl, Init QP
MECHANISMS:

ALIASES:

PARENT ACTIVITY: Al, Initialize Database System
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

/*************************************i*********************/

NAME Initialize Database System
TYPE: Activity

PROJECT: BCP

NUMBER: Al

DESCRIPTION: Entails all necessary steps needed to bring
the DBMS up as a functioning unit (i.e.
supply power, load 0S, initialize system
tables, etc.).

INPUTS:

OUTPUTS: 01, System Ready
CONTROLS: Cl, Startup DBMS
MECHANISMS:

ALTASES:

PARENT ACTIVITY: AO, Provide Relational DBMS Support
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

184

rv A T I3
L . L
o
s R A M
R S
Sl e
A)
L A AR A

e

- ma

/**i*****i******Q'l**********{{***i***********iilii****l*i**/

NAME: Join to Task Tree
TYPE: Activity

PROJECT: BCP

NUMBER: A22232

DESCRIPTION: Adds the incoming query tree into the task
tree as another branch. The query tree will
be joined at the root node based on its

priority.
INPUTS: I1, Priority
I2, Task Tree
OUTPUTS: 01, Task Tree
CONTROLS: Cl, Query Tree
MECHANISMS:
ALIASES:

PARENT ACTIVITY: A2223, Add to Task Tree
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M., Pontiff

/*******************************§***************************/

c NAME: Lockout New Queries

TYPE: Activity

PROJECT: BCP

NUMBER: A3

DESCRIPTION: Causes the frontend to stop listening for
queries.,

INPUTS:

OUTPUTS: 01, FE Locked

CONTROLS: Cl, Shutdown Cmd

MECHANISMS:

ALIASES:

PARENT ACTIVITY: A3, Shutdown System
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

ov - ..

P S e T TR T — - L ‘m LN - e L A et gt
|
|
|
! JAZZ IR A 2 2 A e R AR T e R a2 R T iy
NAME: Log Transaction
TYPE: Activity
PROJECT: BCP
NUMBER: A21223
DESCRIPTION: Provides a transaction log of all queries and
commands (both for backup and security
purposes).
INPUTS:
OUTPUTS:
CONTROLS: Cl, Legal Query, or Cmd
MECHANISMS: .
ALIASES: R
PARENT ACTIVITY: A2122, Execute Preliminary DBMS Functions ;' I
RELATED REQUIREMENT NUMBER: T
VESION: 1.0 RN
DATE: 11/26/84 ;iv;i
AUTHOR: Capt. Dale M. Pontiff i o
JRRRER RTINS RN N [
. NAME: Manage Active Query Step]
(- TYPE: Activity]
- PROJECT: BCP S
NUMBER: A2225 R
DESCRIPTION: Directs the QPs and controls the system paging Sl
of the MBU and MSU.
INPUTS: Il1, Query Status
I2, Page Request
OUTPUTS: 01, Query Step or Paging Info
02, Storage Cmd Vs
03, QS Complete RSSO
I1, Query Status e
Cl, Free QP R
C2, QP Stopped)
CONTROLS: Cl, Preempt QS T
C2, Query Step '
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A222, Execute BCP DBMS Functions
RELATED REQUIREMENT NUMBER:
VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt., Dale M, Pontiff

.....................

...........................

.............

/***i*************/

NAME: Manage DB Data Dic
TYPE: Activity
PROJECT: BCP

) NUMBER: A2123

DESCRIPTION: Responsible for maintaining the database data
) dictionary. If the input message was a valid
DDL command, it modifies the Data Dictionary

as needed.

INPUTS: I1, Data Dic

OUTPUTS: 01, Data Dic, DDL Reply, or Storage Cmd
CONTROLS: Cl, Legal DDL Cmd

MECHANISMS:

ALIASES:

PARENT ACTIVITY: A212, Execute FE DBMS Functions
RELATED REQUIREMENT NUMBER:

s VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M., Pontiff

/***/

‘:: NAME: Manage Paging
TYPE: Activity
3 PROJECT: BCP
: NUMBER: A22252
) DESCRIPTION: Handles the system paging algorithms,
1 INPUTS: I1, Query Status
OUTPUTS: 01, Paging Info

02, Query Status

03, Storage Cmd

04, QS Complete
CONTROLS: Cl, Preempt QS

C2, Page Request
Load Init Pages

-
o
w

-

MECHANISMS:

ALIASES:

PARENT ACTIVITY: A2225, Manage Active Query Steps
RELATED REQUIREMENT NUMBER:

e

VESION: 1.0 -
DATE: 11/26/84 N
AUTHOR: Capt. Dale M. Pontiff -

=

187

/**i***********i**/

NAME: Manage QP Assignment/Release
TYPE: Activity

PROJECT: BCP

NUMBER: A2224

DESCRIPTION: Selects the next Query Step to be executed,
and determines which Query Steps must be
preempted when a job is stopped.

INPUTS: I1, Task Tree
I2, File Status
I3, Resource Status
03, Query Status

OUTPUTS: 01, Query Step
02, Preempt QS
03, Query Status
I1, Task Tree
Cl, Trimmed Branch

CONTROLS: Cl, Preempt
01, Free QP
02, QP Stopped

MECHANISMS:

ALTIASES:

PARENT ACTIVITY: A222, Execute BCP DBMS Functions
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

hansbdosinet e it i

o
AL .
PR TP S

188

....................................

/'l"I"I'I"l***************************************Q‘l*i**i*&**.**i/

, NAME: Optimize Query
i TYPE: Activity
. PROJECT: BCP
: NUMBER: A21224
. DESCRIPTION: Arranges a complex query into a relatively
. efficient query form (tree).
I INPUTS: I1, Data Dic
OUTPUTS: 01, Optimized Query '
CONTROLS: Cl, Legal Query A
MECHANISMS:]
ALIASES: -4
PARENT ACTIVITY: A2122, Execute Preliminary DBMS Functions .
/ RELATED REQUIREMENT NUMBER: N
| VESION: 1.0 o
DATE: 11/26/84 R
_ AUTHOR: Capt. Dale M. Pontiff D
’ C]
: AR Ty Y fﬁ@ﬁ
: NAME: Provide BCP Functions ii?i
R TYPE: Activity RIS
- PROJECT: BCP NN
i U NUMBER : A22 s
. DESCRIPTION: Responsible for scheduling query tasks and ce
managing the system paging.)
INPUTS: S
3 OUTPUTS: 01, System Idle RS
i 02, Query Step or Paging Info Pkt :“fj
03, Storage Cmd Pkt L
Cl, Response Pkt BtR
CONTROLS: Cl, Optimized Query or BCP Cmd Pkt R
02, Page Request Pkt]
X MECHANISMS: M1, Backend Control Processor :
® ALTASES:
" PARENT ACTIVITY: A2, Provide DBMS Functions f_.]
| RELATED REQUIREMENT NUMBER: B
=
3 VESION: 1.0 B
® DATE: 11/26/84]
; AUTHOR: Capt. Dale M, Pontiff .
f. J
- D
> . O

189

AN

AT R Ry R R R LI Y i
NAME: Provide DBMS Functions y
TYPE: Activity

PROJECT: BCP

NUMBER: A2

DESCRIPTION: Contains the necessary DBMS functions needed
to allow queries and commands to be levied
against the existing DB,

INPUTS: Il1, Query, Data, or Cmd Pkt
OUTPUTS: 01, Output or Reply Pkt
02, System Idle
CONTROLS: Cl, System Ready
MECHANISMS: C
ALTASES: - ,
PARENT ACTIVITY: AO, Provide Relational DBMS Support I
RELATED REQUIREMENT NUMBER: -
VESION: 1.0 f-}i
! DATE: 11/26/84 »
- AUTHOR: Capt. Dale M. Pontiff S

‘-4
) R
N L
) - L
- 4
]
e
i LI
e
N
Ty
NN
SN
) - | S
' ._ . -
.
LR P M te N a e saset e e e e e @t e et et e e a ettt e et et et ant, e
R R LN N T e e T s e AT AT e T
IR O P R R MR R P R PR N O P AT R T T R Sl RN N R N

/***/

NAME: Provide Frontend DBMS Functions
TYPE: Activity

PROJECT: BCP

NUMBER: A21

DESCRIPTION: Responsible for communications between the
backend system and the outside world. It is
also responsible for most of the database
management functions not directly related to
relational operations against the database
(such as syntax checks, security checks,
transaction log, and query optimization).

INPUTS: Il1, Query, Data, or Cmd Pkt
| 04, Data Dic or Output Pkt
! OUTPUTS: 01, Output or Reply Pkt

02, Optimized Query or BCP Cmd Pkt
03, Storage Cmd Pkt
04, Data or Data Dic Pkt
CONTROLS: Cl, System Ready
02, Response Pkt
MECHANISMS: M1, Frontend
ALTIASES:
PARENT ACTIVITY: A2, Provide DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff
i
_ »

191

...........................

/***/

NAME: Provide Mass Store Functions
TYPE: Activity

PROJECT: BCP

NUMBER: A23

DESCRIPTION: Responsible for file management. It provides
permanent storage of the existing database,
plus temporary storage of any intermediate
relations created during a query.

INPUTS: I1, Data or Data Dic Pkt
02, DB Page Pkt
OUTPUTS: 01, Buffer Address
02, DB Page Pkt
CONTROLS: Cl, Storage Cmd Pkt
MECHANISMS: M1, Mass Store Unit
ALIASES:

PARENT ACTIVITY: A2, Provide DBMS Functions S
RELATED REQUIREMENT NUMBER:

VESTION: 1.0 *
DATE: 11/26/84 R
AUTHOR: Capt. Dale M. Pontiff
T AR R T R L e T I I Ty ‘.’“““i‘
}]
NAME: Provide Memory Buffer Functions B
TYPE: Activity
PROJECT: BCP B
NUMBER: A24 AR
DESCRIPTION: Provides very fast scratch pad memory for the e 77
QPs to manipulated data. T
INPUTS: I1, DB Page Pkt 1
01, DB Page Pkt u}{uﬂ
OUTPUTS: 01, DB Page Pkt RN
I1, DB Page Pkt R
CONTROLS: Cl, Buffer Address °
MECHANISMS: M1, Memory Buffer Unit D
ALIASES: RO
PARENT ACTIVITY: A2, Provide DBMS Functions Ry
RELATED REQUIREMENT NUMBER: ff'f{
L
VESION: 1.0 ©]
DATE: 11/26/84
AUTHOR: Capt. Dale M., Pontiff

,. .'_'..".". L
. R
,' P . '

192

..........................
...
....................................

........

Lr'

e I B R ATTA R L s e e el A afiang rhd - had I

/******************************ii***************************/

NAME: Provide QP DBMS Functions
TYPE: Activity

PROJECT: BCP

NUMBER: A25

DESCRIPTION: Provides the relational operations (select,
project, join, product, union, difference,
intersection), update operations (insert,
delete, modify), and miscellaneous operations
(min, max, count, sort, sum) that actual act
on the data within the DBMS.

INPUTS: I1, DB Page Pkt

OUTPUTS: 01, Buffer Address
Il1, DB Page Pkt
Cl, Page Request Pkt

CONTROLS: Cl, Query Step or Paging Info Pkt
MECHANISMS: M1, Query Processor
ALIASES:

PARENT ACTIVITY: A2, Provide DBMS Functions
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

/***/

NAME: Provide Relation DBMS Suppert

TYPE: Activity

PROJECT: BCP

NUMBER: A-0

DESCRIPTION: A relational database management system.
INPUTS: I1, Query, Data, or Cmd Pkt

OUTPUTS: 01, Output or Reply Pkt

CONTROLS: Cl, Startup DBMS

MECHANISMS: M1, Backend DBMS

ALIASES:

PARENT ACTIVITY:
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

193

................................
.................................

C e A

YT Tt T e S e fa S S e B Siben g i i i ey

/***/

NAME: Queue BCP Msgs

TYPE: Activity

PROJECT: BCP

NUMBER: A2227

DESCRIPTION: Places any outgoing communication messages in
a queue,

INPUTS:

OUTPUTS: 01, Queue of Outgoing BCP Msgs

CONTROLS: Cl, Storage Cmd
C2, Query Step or Paging Info
C3, Response

MECHANISMS:

ALIASES:

PARENT ACTIVITY: A222, Execute BCP DBMS Functions
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M, Pontiff

/***/

NAME: Queue FE Msgs

TYPE: Activity

PROJECT: BCP

NUMBER: A2125

DESCRIPTION: Places any outgoing communication messages in
a queue.

INPUTS:

OUTPUTS: 01, Queue of QOutgoing FE Msgs

CONTROLS: Cl, Output, Reply and/or Storage Cmd
C2, Data Dic, DDL Reply, or Storage Cmd
C3, Optimized Query, Legal Data,
Legal BCP Cmd, and/or Storage Cmd
MECHANISMS:
ALIASES:

PARENT ACTIVITY: A212, Execute FE DBMS Functions

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M., Pontiff

194

..................................

ORI NPT Tl S T i W IR Tt L S NIV H N TP YAPC U G0 U U thV Y T Y T

0
—y

'

Ciate Sanis S Aie Mese st eow T e

e

ML T T

/***}*********/

NAME: Receive BCP Msgs
TYPE: Activity
PROJECT: BCP

NUMBER: A22]

DESCRIPTION: Listens for incoming messages from the
frontend or the query processors.,

INPUTS:

OUTPUTS: 01, Queue of Incoming BCP Msgs
CONTROLS: Cl, Optimized Query or BCP Cmd Pkt
C2, Page Request Pkt
MECHANISMS:

ALIASES:

PARENT ACTIVITY: A22, Provide BCP Functions
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

/***/

NAME: Receive FE Msgs
TYPE: Activity
PROJECT: BCP

NUMBER: A211

DESCRIPTION: Listens for incoming messages from the host
system or from other components of the Backend
System. The messages are converted into a
useable form for the FE,

INPUTS:
OUTPUTS: 01, Queue of Incoming FE Msgs
CONTROLS: Cl, Data Dic or Output Pkt
C2, Response Pkt
C3, Query, Data, or imd Pkt
MECHANISMS:
ALIASES:

PARENT ACTIVITY: A21, Provide Frontend DBMS Functions
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M. Pontiff

195

Y
"
- 4
[
4
- e v
e
R
‘. Lo -

® <
L TR R
By
v L

..

’»
JRI IR R S e e ey
NAME: Remove From Task Tree .
TYPE: Activity » .
PROJECT: BCP T
NUMBER: A22261
DESCRIPTION: Removes the QS from the Task Tree. _
INPUTS: I1, Task Tree ST
OUTPUTS: 01, System Idle ;‘”‘
02, Task Tree :
03, Check Completion
CONTROLS: Cl, QS Complete
MECHANISMS:
ALIASES:
PARENT ACTIVITY: A2226, Update Task Tree »
RELATED REQUIREMENT NUMBER: :
VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M, Pontiff o
k]
i Ry e g e e e Ly
N
V NAME: Remove 01ld Intermediate Relationss
. TYPE: Activity o
‘ C PROJECT: BCP >
i NUMBER: A22263 e
i DESCRIPTION: Causes the MSU to delete any old temporary A
1 relation(s) used by this query step. T
s INPUTS: e
Y OUTPUTS : 01, Storage Cmd -
‘ CONTROLS : Cl. QS Complete o
- MECHANISMS: .
: ALTASES:
. PARENT ACTIVITY: A2226, Update Task Tree
3 RELATED REQUIREMENT NUMBER: T
b VESION: 1.0 »
DATE: 11/26/84 .
[AUTHOR: Capt. Dale M, Pontiff :j};
g N
[SRty
LI
- L.
196 ffi{

r-' W e —— ——— M Jae saven e A~ T n—_— P MUl SRR Ml i iU Aute S St snd e o |

/***/

NAME: Save Permanent Data YT
TYPE: Activity [
PROJECT: BCP
NUMBER: A32 SRR
DESCRIPTION: Causes the frontend to stop listening for PRy
queries, O
INPUTS: e
OUTPUTS: 01, DB Saved ®
CONTROLS: Cl, System Idle
C2, FE Locked
MECHANISMS:
ALTIASES:
PARENT ACTIVITY: A3, Shutdown System -
RELATED REQUIREMENT NUMBER: .
VESION: 1.0 T
DATE: 11/26/84 o
AUTHOR: Capt. Dale M. Pontiff o
»
A L e S T e s YT ey o
NAME: Select Highest Available Leaf
TYPE: Activity SO
c PROJECT: BCP ;—"""'
NUMBER: A22241 _
DESCRIPTION: Chooses the leaf node with the highest =
priority. If it is directed to reselect, it
ignores all previously selected leaves.
INPUTS: I1, Task Tree DA
OUTPUTS: 01, Leaf Count ; R
CONTROLS: Cl, Free QP L
MECHANISMS: e
ALIASES: el
PARENT ACTIVITY: A2224, Manage QP Assignment/Release T
RELATED REQUIREMENT NUMBER: °
VESION: 1.0 L
DATE: 11/26/84 ST
AUTHOR: Capt. Dale M, Pontiff RS

197

...............

............................

/*********************************'l'*********ii**************/

NAME: Send BCP Msgs
TYPE: Activity
PROJECT: BCP

NUMBER: A223

DESCRIPTION: Converts the BCP's internal data structures
into a form that can be transferred to the
other processors. It sends responses to the
FE, storage commands to the MSU, and query
steps and paging information to the QPs.

INPUTS:
OUTPUTS: 01, Response Pkt

02, Storage Cmd Pkt

03, Query Step or Paging Info Pkt
CONTROLS: Cl, Queue of Outgoing BCP Msgs
MECHANISMS:
ALIASES:

PARENT ACTIVITY: A22, Provide BCP Functions
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt., Dale M, Pontiff

/I'**/

NAME: Send FE Msgs
TYPE: Activity
PROJECT: BCP

NUMBER: A213

DESCRIPTION: Converts the internal system structures into a
form that can be transferred to the other
processors.

INPUTS:
OUTPUTS: 01, Output or Reply Pkt
02, Optimized Query or BCP Cmd Pkt
03, Storage Cmd Pkt
04, Data or Data Dic Pkt
CONTROLS: Cl, Queue of Outgoing FE Msgs
MECHANISMS:
ALTIASES:

PARENT ACTIVITY: A21, Provide Frontend DBMS Functions
RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt. Dale M, Pontiff

198

. U SETTRIURIEL S Tl l- LRI SO L L R Nl Tl N S S SR O i S A T K VA TR VA ._-_.‘- n et T T T ettt ':.'_-.'
B O I R) U AW e e T T T e e e T e e L T T e e T
AR S PP 2 G G N S 3 S N N R G RN, LV L AR VLN

X
JAIZZIIIE RTINS A AR A A e L I LYY S
T o
- NAME: Send Shutdown Reply o
i TYPE: Activity | S
. PROJECT: BCP S
N NUMBER: A33 T
; DESCRIPTION: Informs the users that we are closed. -
. INPUTS: T
Y OUTPUTS: 01, Shutdown Reply -
' CONTROLS: Cl, DB Saved L
. MECHANISMS: Lo
g ALIASES:

PARENT ACTIVITY: A3, Shutdown System
RELATED REQUIREMENT NUMBER:

: T
! VESION: 1.0 L
¢ DATE: 11/26/84 E
3 AUTHOR: Capt, Dale M, Pontiff L
Vo
[T I IEIEI I AT I TN 3 S
NAME: Shutdown System :
TYPE: Activity R
PROJECT: BCP ;—‘—
NUMBER: A3 .
DESCRIPTION: Provides a safe, orderly method of terminating T
the operations of the DBMS,
INPUTS: I1, Shutdown Cmd
OUTPUTS: 01, Shutdown Reply R
CONTROLS: Cl, System Idle E“““
MECHANISMS: L
ALIASES: .
PARENT ACTIVITY: AO, Provide Relational DBMS Support g
RELATED REQUIREMENT NUMBER: S
)
VESION: 1.0]
DATE: 11/26/84 g
AUTHOR: Capt. Dale M. Pontiff L
]
i-
199 e
Lo

.....................
..................
..............

F* B 4 S S e & R 1 AT S St St S SRt e cfurt i A e i e gl SR Sres arth s da i Mg Segk g A JA AR S s et e I i e
)

/i**/

NAME: Startup BCP
TYPE: Activity

_ PROJECT: BCP
NUMBER: Al3

L DESCRIPTION: Causes the BCP to be booted with the BCP
{ Operating System,

INPUTS:
OUTPUTS: 01, Init BCP
CONTROLS: Cl, BCP Startup
MECHANISMS:
S ALIASES: c
1 PARENT ACTIVITY: Al, Initialize Database System ;
{ RELATED REQUIREMENT NUMBER: ’
‘ _
{ VESION: 1.0 R
1 DATE: 11/26/84 -
AUTHOR: Capt. Dale M. Pontiff ~]
“ O
! JAZ IR T L A Ty e R R R T AR T Y
NAME: Startup Frontend
TYPE: Activity
PROJECT: BCP i"‘“‘
NUMBER: All T

DESCRIPTION: Causes the frontend to be booted with the FE
Operating Systems.

INPUTS:

OUTPUTS: 01, Init FE

CONTROLS: Cl, Frontend Startup

MECHANISMS: R
ALTIASES:]

PARENT ACTIVITY: Al, Initialize Database System

RELATED REQUIREMENT NUMBER: S

VESION: 1.0 R
DATE: 11/26/84 R
AUTHOR:: Capt. Dale M. Pontiff

PR
L)
ot

a0 00,
‘g’s’e

P
e '
.
(]
A a's

200

...............

v e T TR A R R TR T S T A T PN BN TR T R A A ArY MRS JU NS R L S e SRS SeG cru B areg

/***i*i*************/

NAME: Startup QP
TYPE: Activity
PROJECT: BCP
NUMBER: AlS
DESCRIPTION: Causes the QPs to be booted.
INPUTS:
OUTPUTS: 01, Init QP
CONTROLS: Cl, QP Startup
i MECHANISMS:
ALTIASES:
PARENT ACTIVITY: Al, Initialize Database System
. RELATED REQUIREMENT NUMBER:
. VESION: 1.0
- DATE: 11/26/84
g AUTHOR: Capt. Dale M. Pontiff

/***/

NAME: Trim Branch

_ TYPE: Activity

c PROJECT: BCP
NUMBER: A22245
DESCRIPTION: Removes the query job from the task tree.
INPUTS: Il, Task Tree
OUTPUTS: 01, Task Tree

02, Trimmed Branch

CONTROLS: Cl, QP Stopped
MECHANISMS:
ALIASES:

PARENT ACTIVITY: A2224, Manage QP Assignment/Release

RELATED REQUIREMENT NUMBER:

VESION: 1.0
DATE: 11/26/84
AUTHOR: Capt., Dale M. Pontiff

MCLAPIM o S A ol o~ Ay AT S,

PRUINIC R e il SOV LA AL i e Sl AR S i el a pel el SNIM SRRt rh DAL AEIL AN (ot SR EIY Jrtt A SR hd
BRI A LA AL P S A A AT AU A AR AP RPN, . N

/****ﬁl***l****l**'I'*'l'**************************************i/

- NAME: Update Task Tree

TYPE: Activity
PROJECT: BCP
NUMBER: A2226

DESCRIPTION: Checks for query completion, removes old
information, and deletes the query from the
task tree.

INPUTS: Il, Task Tree

OUTPUTS : 01, Storage Cmd
02, Response
03, System Idle

' I1, Task Tree
l CONTROLS: Cl, QS Complete

MECHANISMS:

ALIASES:

PARENT ACTIVITY: A222, Execute BCP DBMS Functions

RELATED REQUIREMENT NUMBER:

i VESION: 1.0

t DATE: 11/26/84

: AUTHOR: Capt. Dale M. Pontiff

> PR AT R Ry e e ey

E (" NAME: Verify Access

N TYPE: Activity

- PROJECT: BCP

S NUMBER: A21222

e DESCRIPTION: Provides data security checks. It verifies if

i the user has access rights to the relation,

, field, or command. c

: INPUTS: I1, Data Dic AR

; OUTPUTS: 01, Legal DDL Cmd e

: 02, Legal Data, BCP Cmd and/or Storage Cmd AR

3 03, Legal Query or Cmd o

b CONTROLS: Cl, Correct Query, Data, or Cmd »

. MECHANISMS: P

. ALTASES: ST

: PARENT ACTIVITY: A2122, Execute Preliminary DBMS Functions)

; RELATED REQUIREMENT NUMBER: g
v

3 VESION: 1.0 IR

L DATE: 11/26/84 s

g AUTHOR: Capt, Dale M. Pontiff NS

202 ey

r———— >V —— T e T T O T Y e e Y e e Y T W TN TN ey

Appendix D:

Sample Query in the Frontend

r
d
. A sample query 1is shown here to provide a general
E overview of the actions the FE must take to build a query
i tree that includes all pertinent data from the Data Diction-
ary. It assumes all domains are made from basic data types
(i.e. integer, float, long integer, double precision float,
; character string, bit string). It would be possible to also
provide max/min range values of each domain element, but this
would significantly increase the complexity of the software
i within the FE and the QPs.
- In the sample, the database contains the following
'j domain, and two base relations:
h L, Domain Name Data Type
K name char (varying)
address char (varying)
inches integer
" 1bs integer
i age integer
SSAN integer
: sex char (1)
g title char (varying)
. pay float
. skill char (1)
®
' Personnel Relation
Field Id Attribute Name Attribute Domain
1% Name name
2 Addr address o
3 Height inches T
4 Weight 1bs .
5 Age age -
6 SSAN SSAN
7 Sex sex =
8 Job_title title C <

203

T = T TR T YT Y W Y v v
.. RPCEC . v, . - v

Job Relations

Field Id Attribute Name Attribute Domain
1% Job title
2 Pay pay
3 Skill_level skill

In this sample, the employer wishes to determine what
relation (if any) there is between the employees sex, and pay
for everyone under 50 years of age.

select sex, age

from personnel, job

where personnel.job_title = job.job

and personnel.age < 50

This query is passed from the host to the FE, The FE
checks the syntax, and user access rights, (for the purpose
of the demonstration, it is will assumed that this is a valid
query). The FE then logs the transaction and optimizes the
query into a tree form. Figure D-1 shows the query as an

optimized query tree. The query step nodes are numbered in

the order they are discussed, not processed.

°
-]
t;tf-:-‘_-t;‘i
»
- A. 1
AR
_ > |
204 : ::j_’A'.: ~
] .

results
. / project S .

5 sex,pay

job_title = job

sex, job,pay
job_title
' c intermediate
ﬂ job relation
{job, pay, skill_level}
1 age < 50 it ?
| »
- h
personnel
name, addr, height, weight O
age, SSAN, sex, job_title}] 4
Figure D-1. Optimized Query Tree. ;
.] J
R RS
205 S
l
RO

Since the data dictionary is only available to the FE,
it must build self contained query steps for the QPs to act -
on. To do this, it passes pertinent data about each query
step down to the QP in thru the selection <c¢riterion,
attribute list, and modification list.

For node #1, (select personnel tuples where 'age' < 50),
the selection criterion is used to tell the QPs to compare

the fifth attribute field (age) with a constant value of 50.

The resulting relation (Pl1) has the same format as the input]
relation (personnel).

Node #2 projects out only the attribute fields sex and ' 1
job_title (fields 7 and 8). This is done by setting the
attribute 1list in the query step to fields 7 and 8, The

‘: resulting relation (P2) consist of only two attribute tuples; ;;“4;
{(1, sex) and (2, job_title)}. The ordering is determine by
the attribute list., If the attribute list were set to fields

8 and 7, then the resulting relations would contain tuples 5 5“j

with {(1, job_title), (2, sex)}.
Since the Select Node (node #1) uses only the selection

criterion, and the Project Node (node #2) uses only the ®

attribute 1list, it is feasible to combine these operation

into a single Select/Project query step. This would provide ;QEfJ

significant savings 1in terms of paging, at the <cost of 5"

software complexity within the backend system,
Node #3 is another project node. It tells the QPs to

keep only the first two attribute fields of the relation []

206

..............................
..
...

‘o

'job.' Thus, the output relation (J1) contains tuples with
{(1, job), (2, pay)}.

The next node (#4) is a join operation. It uses the

selection criterion to tell the QPs to join relation 'P2'

with relation 'Jl' where P2.,job_title = Jl.job. The S
selection criterion 1is set to compare field 2 with field 1
and concatenate the two relations if they are equal. In a
join operation, the first field always refers to the first -
input relation, while the second field refers to the second
input relation. Thus we are comparing the second field in

relation P2 (P2,job_title) with the first field in relation

J1 (Jl.job). The resulting relation (PJ) consist of tuples
with the following attribute set:
C {(1, sex), (2, job_title), (3, job), (4, pay)}

Note that the second relations is concatenated behind the

first relation.

The final node (#5) removes the unwanted field in é:)
relation PJ giving the final result of {(1, sex), (2, payj)}.
Again, since the join operation does not use the attribute
list portion of the query step, it is possible to create a [)
combined Join/Project node at the cost of software : EE
complexity. :
The information passed down to the QPs thru the query i. ;

steps consists only of the field id (number), not the field

name., So, the FE must know what the tuples of each
- intermediate relation will look 1like, A
207
R
*
R R SN N S T I,

L wam e s an am mnan Lo

p—

Appendix E:
Summary Paper for a

Backend Control Processor for a Multi-Processor

Relational Database Computer System

Introduction

Work was begun on the Multi-Processor Backend Relational
Database Management Computer System in 1981 by Robert Fonden.
His purpose was to design a database machine to relieve the
main frame comﬁuter of the DBMS tasks. This would free up
the resources of the main frame for other tasks while sup-
plying faster, cheaper responses to user database queries.

The 1initial work being done is of an investigative
nature. Methods are being tested to determine where major
advances to the system can be obtained, but the final system
configuration is not fixed.

The current design configuration consists of a frontend
processor (FE), a backend control processor (BCP), several
query processors (QPs), a fast multi-port memory unit (MBU),

and a permanent storage device (MSU) (See Figure E-1).

Overview

The FE is connected to a host system, network, or CRT
and receives any incoming user queries or commands. It
performs syntax and security checks against the input by
referencing the database data dictionary (which is stored on

the MSU). If the input was a retrieval query, the FE

208

.........

. BRSSP S S . “ e
R PRSI o A e T e e T e T e T s T e e e e
PR LTI R A R e AT W, VI DT Uil U DL DI, PR U, WAL U AL S A S O S S PSP PR . VLYY

T

e e
L

Host,
Network,
or CRT
r Frontend ,‘ }f
Lf ~ R
- ‘
Backend Memory ';;f'
Control Buffer B
) Processor Unit SR
f. :
N 1 l ;ﬁ;?ﬁ
Query Query o e e Query e
Processor Processor Processor
< 1 T L

Figure E-1. Physical Design of Backend System

optimizes it, and stores it as a query tree (See Figure E-2).
Any commands that modify the data dictionary are executed 1in
the FE, all other commands and queries are passed down to the

BCP. Upon the completion of a query/command by the BCP, the

FE receives a response message, For update queries and
commands, the response contains a reply about the sucess or
failure of the query/command. For retrieval queries, the

response contains the name of the output relation on the MSU. fgiff

The FE then transfers any reply or output relation to

b e o AN Aot e et
QD A SR A RS P X XL ATRA S St

LRSI S el I e dac

results

/ 2 \sex.

sex,pay

BN
”»
@

job_title

1 age < 50

personnel

Lng aun s e 4 vv"'v. —p—— Lt e
PR P P G,
PPN LA Lottt

name, addr, height, weight
age, SSAN, sex, job_title

job

job_title = job

job, pay, skill_level

intermediate
relation

Figure B-2 Optimized Query Trece.

the host system and removes the output relation (if any). —
The BCP receives update queries, optimized retrieval

queries, and miscellaneous job control commands (stop/restart

/abort query, change priority, status, etc.). The BCP's job -

is to control the assignment of the QPs to specific query

steps, manage the system paging algorithms, and control the

creation/deletion of temporary relations. It maintains a ;

list of all query steps, the status of each QP and the MBU,

and the file size and name of each temporary and base

relation it must access. ;f;m
It is able to direct the MSU to read/write data pages ;il;

from any file into and out of the MBU, but does not need to f;;é

exchange any data with the MBU itself (except <control ;f;;

messages).

The QPs perform the actual update/retrieval step against

the database, Each QP receives a single query step from the i
BCP along with the necessary paging information to allow them

to access the proper page in the MBU (for both input rela-

tions and output relations), As a QP completes a page in the d
MBU, it informs the BCP and begins work on the next page of .
the relation. The BCP is able to free the page just com-

pleted by the QP and direct the MSU to read/write to that ?;.,

page 1in the MBU. By allowing the QPs to queue up paging

information messages, a buffering scheme is achieved. This ;}{;

allows the BCP to send several input/output pages to the QP %,_f

211

...

RN
. AR " Pl GG R A A SN
DAL PRSP, WA O WAL WAL U WL WAL VAT AP R WAL W SR Al W

r‘ - n e e e P M A A S gk e e ae g e CEMICIA A PR Aryl St A B S SOEAr TR SRR e A AN S SR AU Sl Jodh S BeGR gru e g e |

and provide smooth, continuous processing by the QPs.

The MSU provides a permanent storage device for the ¢;;¢
backend system, It stores the database data dictionary and
all base relations, It also provides storage space for any

temporary files that must be paged out of the MBU, —

The MBU provides a fast common scratch pad for the QPs
to manipulate the data. It is managed indirectly by the BCP
t thru the MSU and QPs. The BCP controls which pages the MSU S

and QPs access and in what fashion (read/write).

The BCP (projected)

The BCP must coordinate the actions of the backend

KRN
Y
r

machine. It is connected to the QPs in a master/slave rela-

tionship and directs their actions by passing them query
steps and paging information. It must be able to control the
MSU to get the data pages down to the QPs (thru the MBU). It
indirectly controls the MBU by controlling the paging of the —
MSU and QPs into/out of the MBU. Finally, it must coordinate
the recombining of several output relations generated by
multiple QPs acting on the same query step.

Upon receiving a query tree from the FE, it determines
the priority of the query and adds it to the active query
tree (this is a collection of all queries within the back-
end). Any query step which has some data available to from
all of 1its input files is eligible to be assigned to a QP,

Any time the active query tree is not empty, and there is at

least one idle QP, the BCP examines the active query tree to

212

—r o™ LWt N N L N

determine which eligible node should be assigned to the QP.
This allows the BCP to dynamically decide how many QPs to
assign to any eligible query step based on the current work-
load, and status of other QPs.

Once the QP is assigned to the query step, the BCP must
determine how many pages of storage in the MBU should be
dedicated to the query step/query processor pair., It
allocates the storage based on the query step operation
(select, project, join, etc.), the amount of free stroage in
the MBU, and the status of the other QPs in the system. The
storage allocation algorithm is essentially a virtual memory
manager which guarantees each active QP a minimum number of
memory pages based on the query step operation.

As the QPs generate output relations, the BCP must
decide whether or not to page the data out to the MSU. If
the relations are small, or the output data is being pipe-
lined into another QP as input, the BCP will attempt to keep
the data in memory. Otherwise, the data must be moved to the
MSU to make room for input/output data needed by other QPs.
The BCP must be able to create and delete temporary files on
the MSU and manage these files (so it knows which file con-
tains what output).

If a query step is large enough to warrent the action of
two or more query processors, the output must be combined in
a manner which can remove duplicate tuples (if required).

This 1is done by breaking the output file(s) into sizes that

- g —v— =

B on vsmigly

will fit into the memory allotted to a QP and performing an
in-place sort (i.e. heapsort, or quicksort) on the data.
After two portions of the file are sorted, a merge sort
algorithm 1is used to combine them into a single larger file
(removing duplicate tuples during the merge). By continuing
in this fashion, all duplicate tuples can be eliminated, and

the file combined into a single output relation.

Current Implementation of the BCP

The previous section discussed how the BCP should event-
ually operate, although what is currently implemented falls
short in some areas.

The BCP stores incoming queries in a doubly 1linked
circular priority 1list. Each query is in a modified tree
form (update queries contain only a single query step; thus
are a trivial tree), with leaf pointers connecting the bottom
most leaves of the query tree (See Figure E-3), Only 1leaf
nodes are eligible for assignment to the QPs; thus pipelining
is not currently supported.

The QP assignment algorithm does dynamically assign the
QPs, but uses a very simple approach., First, it assigns one
QP to each eligible query step (by order of priority). If
there are more QPs than eligible query steps, it takes the
highest priority leaf node and continues to assign the extra
QPs to it until the ratio of pages in the relations to QPs is

less than a constant value (currently 25). If there are

214

LR 0
PSS BESECRR]

To To

Previous Next
Branch Branch
back forward

firstleaf

o

Parent/Child Ptr
T, - ———- >
Next/Prev Leaf Ptr

i Figure E-3. Query Tree (Branch).

»
k still idle QPs, the process begins again on the next highest)

leaf. This continues until all the QPs are assigned, or

every eligible query step has been checked. Thus, there may

P S T T

be idle QPs because the cost of splitting a node below a
certain point is uneconomical (i.e. it takes more time to :fﬁﬁﬁ
recombine the output relations). »

Because AFIT does not currently have a multi-port memory

215

(or a suitable substite) for experimental projects, the MBU

was eliminated (temporarily) from the implemented version of
the backend system. Instead, each QP must reserve memory
storage within their own RAM, The storage allocation al-
gorithm on the BCP is limited by this restriction, and cannot
dynamically allocate more storage space for any single query
step than is available in the QP., This also prevents the BCP
from giving one QP more storage than another on a dynamic
basis, and eliminates the ability to pipeline data without
transferring the data between processors.

The BCP does have a sophisticated file management capa-
bility. It maintains an output file for each query step that
a QP acts on, and removes any temporary file as soon as
possible. Unfortunately, time did not permit the implementa-
tion of the sort or merge paging algorithm, so the system is

not able to eliminate duplicate tuples at this time.,

Conclusion

The development of the Backend Relational DBMS Computer
System is still in its infancy. Several areas have been
advanced, and some solutions proposed. The ability to
dynamically allocate QPs and memory space, and the general
system paging algorithm are implemented, but a tremendous
amount of work remains to be completed on the BCP and the

backend system,

216

,‘
i

o . e e e e, e e
. RPN . Lot
Vo .

. e PR
T . ' A

Ly f 2 gl

. e l‘ LR
TRy R)

AR
TN

)
.

vy,

.t;; 1,

2

v
PO VP

Prm—
" <
4

-,
-7

- -
q

-~ -

.

.....................

Bibliography

1. Advanced Digital Corporation. Technical Manual for Super
Quad. Garden Grove, California: Advanced Digital

Corporation.
t 2. Advanced Digital Corporation. Technical Manual for Super
l Slave. Garden Grove, California: Advanced Digital

Corporation.

3. Boral, Haran and others. "Implemenatation of the
Database Machine DIRECT," IEEE Transactions on Software
Engineering, Vol SE 8, No 6, November 1982.

E N T

4. Date, C. J. An Introduction to Database Systems (Third
Edition). Reading, Massachusetts: Addison-Wesley
Publishing Company, 1982,

5. DeWitt, David J. "DIRECT - A Multiprocessor Organization
J for Supporting Relational Database Management Systems,"”
IEEE Transactions on Computers. Vol C-28, June 1979,

6. Fonden, Robert W. Design and Implementation of a Backend
Multiple-Processor Relational Data Base Comguter System,
(_, Master Thesis, Air Force Institute of Technology (AU),
Wright-Patterson AFB, Ohio, 1981.

-_s. .-

7. Hartrum, Thomas. Air Force Institute of Technology,
Department of Electrical Engineering. Memorandum on 1984
AFIT Thesis Research in Database Management System

IR ¥ 2N R

Design. Wright-Patterson AFB, Ohio, May 1984,
8. Hsiao, David K. and M. Jaishankar Menon. Design and
Analysis of a Multi-Backend Database System for R
Performance Improvement, Functionality Expansion an ﬁ{jq
‘ Capacity Growth (Part I), Contract N00014-75-C-0573 RO
) Office of Naval Research. Ohio State University, o
- Columbus, Ohio, July 1981, T
9. Hunter, Bruce H, Understanding C. Berkeley, California: .2
SYBEX Incorporation. 1984,]
i 10. Kerr, Douglas S. and others. The Imglementatio of a . "]
) Multi-Backend Database System (MDBS Part l - Software T
g Engineering Strategies and Efforts oward a a Prototype SRS
. MDBS, Contract NO014-75-C-0573, Office of Naval e
- Research. Ohio State University. Columbus, Ohio, January RN
- 1982, e
) —
]
- 217
' -

11. Peters, Lawrence J. Software Design Methods and

Techniques. New York: Yourdon Press. 1981.

12. Rogers, William R. Development of a Query Processor for ’ ¥
a Back-end Multiprocessor Relational Database Computer, :
Masters Thesis, Air Force Institute of Technology (AU),
Wright-Patterson AFB, Ohio, 1981.

13. Roth, Mark A. The Design and Implementation of a

R 20 INLIV L I P
) .
R)

- vy . BN]

Pedagogical Relational Database System, Masters Thesis,
Air Force Institute of Technology (AU), Wright-Patterson
AFB, Ohio, 1979.

14. Ullman, Jeffrey D. Principles of Database Systems :
(Second Edition). Rockville, Maryland: Computer -
Science Press, 1982, ’

15. Zolman, Lear. BDS C Compiler v1.5 User's Guide. 1
Manual. Brighton, Massachusetts,]

S
i[ﬁ]

£

-y . .
. LTt

T
9
>
- h
- .“
.-\:.]
T
. 1

218

’
L

T T T T — — — B i hart, A amit e e e Snter g taae der 4 LT e e VT Y

VITA

Captain Dale M. Pontiff was born on 14 August 1957 at
Westover AFB, Massachusetts, He graduated fron high school
in Lafayette, Louisiana, in 1975 and attended the University
of Southwestern Louisiana from which he received the degree
of Bachelor of Science in Computer Science in May 1979. Upon
graduation, he received a commission in the USAF through the
ROTC program. He was assigned to the Data Services Center,
Pentagon, Washington DC., were he was a system analyist on
the Honeywell Multics computer. Since to the School of

Enginerring, Air Force Institue of Technology, in May 1983,

Permanent address: 301 Woodvale Ave.
Lafayette, LA 70503

219

) UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

R

.a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2s. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

distribution unlimited,

s PERFORMING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/84D-22

5. MONITORING ORGANIZATION REPORT NUMBER(S)

68 NAME OF PERFORMING ORGANIZATION

School of Engineering
AFIT/ENG

b. OFFICE SYMBOL
(1f applicabdle)

7a. NAME OF MONITORING ORGANIZATION

6¢c. ADORESS (City. State and ZIP Code)
Air Force Institute of Technology

7b. ADDRESS (City, State and ZIP Code)

re
> Wright-Patterson AFB, Ohio 45433
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
Rome Air Development Center RADC/CO
8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
D PROGRAM PROJECT TASK WORK UNIT
Gtiffiss AFB, New York 134.4.1 ELEMENT NO. NO. NO. NO.
1. TITLE (Include Security Classification)
See Box 19
. - 12. PERSONAL AUTHOR(S)
g & Dale M. Pontiff, Capt. USAF
13e. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo.. Day) 15. PAGE COUNT
. Thesis FAOM TO 84 Dec 227
o) 16. SUPPLEMENTARY NOTATION
- Y
[T B
‘ COSATI CODES 8. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
ro»;m Gg:up SUB. GR. Database, Database Machine, Data Management, Backend Process
2 Management Info System, Multiprocessors, 9, 44.5.‘;'/%"‘

19. ABSTRACT (Conlinue on reverse if necessary and identify by block number)

Title: BACKEND CONTROL PROCESSOR FOR A MULTIPROCESSOR
RELATIONAL DATABASE COMPUTER SYSTEM \ . iewise: 1AW AFR 15017
{T WL """L‘“‘:.‘.«—l Prrleceional Developmant
: Daan ot I\ir):;‘:_fa] (J{“T("“.:lc!:ﬂY {A1C)
> Thesis Advisor: Dr. Thomas C. Hartrum @;i::f_i:u:;;;n i vd 4
]

- N20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLasstFIED/UNLIMITED XX same as rReT. (J oTic users (J

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

hite
ettt

22s. NAME OF AESPONSIBLE INDIVIDUVAL

22b. TELEPHONE NUMBER
{Include Area Code)

22¢. OFFICE SYMBOL

513-255-3576

»
DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 1S OBSOLETE.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

'.-'...‘A S, R .4"."‘--
LI PR L) '—ﬁ. N

P I S At e
S e e T e e
PREPRIPE SN PR A SR

)
o

."~_"\---_'.
. .

- “a ..
LS, SN W NI

M T W)

a

. g e T——— - 00 TAeCRn o o S Soin Ao |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

e

This-paper discusses the design and development of a control processo. for
- a multi-processor relational database machine. The objective was to create the software
. needed to allow a micro-processor to receive relational query trees from a frontend
- processor, and to distributé the work load between several other slave processors.
. The requirement analysis of the controller determined that the controller must
S provide three major functions within the backend database machine. It must assign
h slave processors to query operations, control the system paging, and manage file
L creation and deletion. Next, the thesis proves that each query operation canbe
| sucessfully split across several slave processors and the results be recombined to
provide the same response as a query executed on a simgle processor. Finally, the
L thesis gives a detailed description of the software algorithms used by the BCP to
h manage the backend system. (- tgenader v o AR gurects snelusland. = o iona P

.
a b

PR

o
A b ahoho

‘e alalel e

I

. Qf!"oq'rv ~ AEEICIFA?lf\.n ae LI L p.o- .-

UNCLASSIFIED

. .. .
- - o

e e e e et e e e T .. . K . ','- .
.c,--.'.-’.'l. -¢~. e e .-.-.',-.-‘- ‘- -.-.,-‘.-.4~..-_. Cet o _'.~. ’.".""','\ T
PACACAL AT '.-.‘.1.’ e J&' *.:.' N .' WY ‘; Y ',_,",_.'_ I A AT I, WAF JALIASIAE W I 2 - - M‘

-

